Publications

Color Contoning for 3D Printing

Publication

ACM Transactions on Graphics (SIGGRAPH 2017), 2017

Authors

Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, Wojciech Matusik

Abstract

Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object’s surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object’s volume. Since inks are inside the volume, our technique results in a uniform color surface
with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results.

Paper

Color3DP_compressed.pdf

CDFG

© 2021 The Computational Design & Fabrication Group