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Abstract: Efficient simulation of tactile sensors can unlock new opportunities for1

learning tactile-based manipulation policies in simulation and then transferring the2

learned policy to real systems, but fast and reliable simulators for dense tactile nor-3

mal and shear force fields are still under-explored. We present a novel approach4

for efficiently simulating both the normal and shear tactile force field covering5

the entire contact surface with an arbitrary tactile sensor spatial layout. Our sim-6

ulator also provides analytical gradients of the tactile forces to accelerate policy7

learning. We conduct extensive simulation experiments to showcase our approach8

and demonstrate successful zero-shot sim-to-real transfer for a high-precision peg-9

insertion task with high-resolution vision-based GelSlim tactile sensors.10

Keywords: Tactile Simulation, Tactile Manipulation, Sim-to-Real11

1 Introduction12

Just as humans heavily rely on the rich and precise tactile cues for dexterous grasping and in-hand13

manipulation tasks, robots can also utilize tactile cues as an important source of sensing for inter-14

acting with the surrounding environments, especially when the visual information is unavailable15

or occluded. With the recent development of various tactile sensors capable of generating dense16

normal or shear load information [1, 2, 3, 4], researchers have been exploring how to leverage this17

important mode of information for robotic manipulation tasks. With the dense tactile normal load18

field, the static spatial relation between the object and the robot manipulators can easily be inferred,19

which is useful for tasks such as edge following [5], pose estimation [6], object reconstruction and20

recognition [7, 8]. On the other hand, the dense tactile shear force feedback more readily gives21

rich information about the dynamic tangential motions between the object and the manipulators,22

and thus can be utilized in tasks such as stable grasp [9], precise insertion [10, 11], and slip de-23

tection [12, 13, 14, 15]. However, most of the tactile manipulation work still requires significant24

amount of human effort on real hardware system for collecting data, cleverly building automatic25

resetting mechanism, and carefully designing the learning strategy [10]. Such manual work can be26

time-consuming, cost expensive, and more importantly unsafe during policy exploration.27

Due to its capability to replicate the real world with high fidelity and low cost, physics-based simu-28

lation has become a powerful recipe for learning robotic control policies [16, 17, 18, 19]. Previous29

work has demonstrated that the policy can be efficiently learned in simulation and successfully30

transferred to real robots via proper sim-to-real techniques [20, 21, 22]. Despite the prevalence of31

simulation and the importance of tactile sensory in robotics, physics-based simulation is still under-32

explored to efficiently simulate dense tactile normal and shear force fields for robotic applications.33

Most popular simulators [18, 19] only support force-torque sensors which are attached to each robot34

link, only producing the contact force values at a few points on each body. Although one can ac-35

quire a dense tactile force field via attaching many small cuboids to the robot body and querying36

the force sensor on each small cuboid from simulation [23, 24], the obtained tactile force values are37

usually sparse and are unable to match the uniform force distribution on a real elastic tactile sensor38

such as GelSlim [1]. While researchers have also tried simulating realistic tactile feedback via pure39
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geometric methods [5, 25], such methods typically only compute the normal tactile force and can-40

not simulate the tactile effects in shear directions. On the other hand, the tactile shear forces have41

been successfully simulated via finite element method (FEM) [26, 27, 28] or data-driven approach42

[29], but these simulators suffer from expensive computation costs, and cannot be easily used for43

data-hungry policy-learning approaches such as reinforcement learning (RL).44

We present a novel tactile simulator that can efficiently and reliably simulate both normal and shear45

tactile force fields covering the entire contact surface. We build upon rigid body dynamics formula-46

tion and develop a fast penalty-based tactile model which can run at 1000 frames/s on a single core47

of Intel i7-9700 CPU. Our tactile model can reasonably approximate the soft contact nature of soft48

tactile sensor material such as the elastomer used in GelSlim [30], generate dense tactile force fields49

(e.g., the dense marker array on GelSlim), and is compatible with arbitrary tactile sensor spatial lay-50

out (i.e., flat plane, hemisphere, etc.). Furthermore, our compact tactile formulation is differentiable,51

which allows the simulator to provide fast analytical gradients for the entire dynamics chain. We52

conduct extensive experiments in simulation to demonstrate the capabilities of our tactile simulator,53

including policy learning with reinforcement learning algorithms and gradient-based algorithms. We54

also conduct a zero-shot sim-to-real experiment for a high-precision tactile-based peg-insertion task,55

demonstrating that our simulator provides realistic tactile simulation.56

2 Related Work57

While there have been many physics-based simulators developed to simulate various types of robots,58

efficiently and reliably simulating dense tactile sensing fields is less explored. As mentioned above,59

most robotics simulators such as MuJoCo [18] and PyBullet [19] only support force-torque sen-60

sors that are attached to each robot link. While it is possible to augment these simulators with61

high-resolution tactile forces, they become computationally cumbersome. In order to acquire more62

realistic and dense tactile forces, Narang et al. [26, 27] and Ding et al. [28] use soft materials to63

model the tactile sensors and apply finite element method (FEM) to simulate the deformation and64

force fields of the tactile sensors. Despite its high fidelity of the simulated tactile feedback, these65

simulators suffer from expensive computation cost and are primarily used to collect supervised tac-66

tile dataset instead of learning policies which are typically data-hungry and requires fast simulations.67

Vision-based tactile sensors produce high-resolution tactile feedback. To simulate vision-based sen-68

sors, Wang et al. [25] and Church et al. [5] use PyBullet [19] and render the intersecting part between69

the object and the tactile manipulator as depth images, from which tactile information is generated.70

However such purely geometry-based approaches cannot simulate the tactile effects in the shear71

directions such as the marker displacements of GelSlim. Si and Yuan [29] compute the marker72

displacement field by presenting a superposition method to approximate the FEM dynamics. While73

they are able to simulate the tactile shear effects, the speed of the simulation is still slow, and no con-74

trol tasks are demonstrated. Bi et al. [31] build an efficient simulation specialized for a tactile-based75

pole swing-up task with a customized vision-based tactile sensor, but the proposed technique is not76

readily extensible to simulate other types of tasks and tactile sensor types. Similarly to our work,77

Habib et al. [32] use a spring-mass-damper model to simulate tactile normal forces, and Moisio78

et al. [33] use a soft bristle deflection model for simulating the tactile forces. However, there is no79

control tasks demonstrated to be learned with the presented simulators and no gradients information80

is available. In contrast to these previous works, we present a generic simulator with analytical gra-81

dients for tactile forces by leveraging the penalty-based rigid body dynamics, and we demonstrate82

that our simulation is efficient enough for policy learning, and simulated tactile force field can be83

successfully used for a sim-to-real task on the high-resolution vision-based GelSlim sensor.84

3 Method85

We now present our approach to simulate tactile forces for real-world tactile sensors. In §3.1, we86

introduce our flexible representation for tactile sensors. In §3.2-3.3, we present our penalty-based87

tactile model for simulation and derive the analytical gradients of the dynamics. In §3.4, we describe88

our intermediate tactile signal representation for the sim-to-real transfer of the policies.89

2



3.1 Tactile Sensor Representation90
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Figure 1: Tactile Sensor
Representation.

Each tactile point i on a sensor pad is represented by a tuple hBi,Ei, ⇠ii91

as shown in Fig. 1. Bi is the rigid body the tactile point is attached to,92

and Ei 2 SE(3) is the position/orientation of the point in the local coor-93

dinate frame of the body, with the xi and yi axes in the shear-direction94

plane and the zi axis along the normal tactile direction. (These axes are95

the same for all points for a planar sensor pad.) Finally, ⇠i are the sim-96

ulation parameters of the penalty-based tactile model, which will be introduced later in §3.2. Our97

representation for tactile points is flexible, allowing us to specify any number of points in arbitrary98

geometry layouts on a robot, and each tactile sensor can have its individual configuration parameters.99

3.2 Penalty-based Tactile Model100

We use a penalty-based tactile model to characterize the force on each tactile point. For each point101

hBi,Ei, ⇠ii, we use the following contact model [34] to obtain the contact force at the tactile point’s102

location represented in the local coordinate frame Bi. (For brevity, we drop the subscript i.)103

fn = (�kn + kdḋ)dn, ft = � vt

kvtk
min(ktkvtk, µkfnk), (1)

where fn is the contact force at the tactile point along the contact normal direction n, and ft is the104

contact friction force in the plane tangential to the contact normal direction. The scalar d (nonposi-105

tive) is the penetration depth between the point and the collision object, and ḋ is its time derivative.106

The vector vt is the relative velocity at the contact point along the contact tangential direction.107

Scalars kn, kd, kt, µ are contact stiffness, contact damping coefficient, friction stiffness, and coeffi-108

cient of friction respectively, and they together form the simulation parameters ⇠ of the tactile point:109

i.e., for the i
th tactile point, ⇠i = {ki

n
, k

i

d
, k

i

t
, µ

i}. After the frictional contact force is computed for110

each point as f = fn + ft, we transform this force into the local coordinate frame of the tactile111

point to acquire the desired shear and normal tactile force magnitudes:112

Tsx = f>x, Tsy = f>y, Tn = f>z, (2)

where x,y, z are the axes of frame E.113

Our penalty-based tactile model can be integrated into any simulator as long as the required values,114

such as the world-frame location of the tactile points, the contact normal, the collision penetration115

depth and its time derivatives, can be acquired from the simulator. We implement our tactile model in116

C++ and integrate it into differentiable RedMax (DiffRedMax) [34, 35] since DiffRedMax is open-117

source and readily provides all the required information for our computation, and more importantly,118

its differentiability allows us to make our tactile simulation differentiable with a moderate amount119

of modifications to its backward gradients computation.120

3.3 Differentiable Tactile Simulation121

Since we use an implicit time integration scheme for forward dynamics, the core step of gradients122

computation is to differentiate through the nonlinear equations of motion. We start by formulating a123

finite-horizon tactile-based policy optimization problem:124

minimize
✓

L =
HX

t=1

Lt

�
ut, qt, vt(qt)

�
(3a)

s.t. g(qt�1, q̇t�1,ut, qt) = 0 (Equations of Motion) (3b)
ut = ⇡✓

�
q̃t�1, ṽt�1(qt�1), Tt�1(qt�1, q̇t�1)

�
. (Policy Execution) (3c)

Here, H is the task horizon, Lt is a step-wise task-dependent reward function, u is the action125

(e.g., joint torque), q is the simulation state (i.e., joint angles), and v is the derived auxiliary sim-126

ulation variables (e.g., fingertip positions) which themselves are a function of q. Eq. 3b describes127

the nonlinear equations of motion (§A.1). Eq. 3c represents the inference of the control policy ⇡✓ to128

obtain the desired action given the partial observation of the simulation state q̃, partial observation129

of the simulation computed variables ṽ, and the tactile force values T from Eq. 2.130
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Figure 2: Sim-to-Real Pipeline for Insertion Task (§4.5). Gray Box: During training, we convert the tactile
force output from the simulator into the normalized flow map representation (shaded in green). Yellow Box:

When executing the policy on a real system, we convert the sensor output into the same normalized flow map.
This intermediate representation is then treated as the observation input to a neural network policy to output the
pose adjustment for the next attempt. Here we only visualize the tactile output from one tactile sensor pad.

We compute the gradients dL/d✓ = (dL/dut)(dut/d✓) for policy optimization. We embed our131

simulator as a differentiable layer into the PyTorch computation graph and use reverse mode differ-132

entiation to backward differentiate through dynamics time integration. The first gradient, dL/dut,133

which includes the tactile derivatives, is derived analytically, as shown below. The second gradient,134

dut/d✓, is computed by PyTorch’s auto-differentiation.135

At each time step t, we derive @L/@ut given the analytically computed gradients with respect to the136

system states, auxiliary variables, and tactile forces (@L/@qt, @L/@vt, @L/@Tt; see §A.2-A.3):137

dL
dut

=
@Lt

@ut|{z}
a

+

✓
@L
@qt

+
@L
@vt

@vt
@qt

+
@L
@Tt

�@Tt

@qt
+

@Tt

@q̇t

@q̇t
@qt

�◆

| {z }
b

@qt
@ut|{z}

�A�1D

.
(4)

The right-most derivative can be computed by applying the implicit function theorem on Eq. 3b,138

which gives us @qt/@ut = �(@g/@qt)�1(@g/@ut). Writing this as @qt/@ut = �A
�1

D and139

combining with Eq. 4, we first solve the linear system A
>c = �b> for c, and then we compute the140

final gradient as dL/dut = a+ c ·D using the adjoint approach.141

3.4 Normalized Tactile Flow Map for Sim-to-Real142

We use the GelSlim 3.0 sensor [4], which utilizes small markers to track motions in the shear direc-143

tion, to demonstrate the sim-to-real capability (§4.5). There is an unavoidable sim-to-real gap be-144

tween our simulator emulating tactile forces and the physical GelSlim sensor that relies on imaging.145

In this section, we demonstrate how we overcome this gap by constructing a common intermediate146

tactile representation for policy input observation. We assume that the stiffness of the sensor along147

different shear directions is isotropic and that there exists a linear relationship between the displace-148

ment and the contact shear forces (Tsx and Tsy from Eq. 2) at each tactile point. We connect these149

two different sensor output formats via a unitless normalized tactile flow map representation.150

Specifically, we use the raw tactile sensor images from the past k steps from the n tactile sensor pads151

on a real robot as our policy observation T
{1:k,1:n}
image . As shown in Fig. 2, we first detect and identify152

the marker positions in each image, and obtain the marker displacement field T
{1:k,1:n}
displacement 2 r⇥c⇥2153

by subtracting the marker positions in the rest configuration from their positions in the deformed154

configuration, where r and c are the rows and columns of the tactile marker array on each sensor155

pad, with each marker giving us the x and y displacement information. Then we normalize the156

displacement field so that the maximal length of the marker displacement across all tactile points157

and images is of unit length; i.e.,158

T
{1:k,1:n}
normalized =

T
{1:k,1:n}
displacement

max
�
maxk,n,r,c(kT {k,n}

displacement(r, c)k), ✏
� , (5)

where ✏ ensures that the output is zero when there is no any displacement on the markers (i.e., no159

contact). We concatenate these flow maps into a single tensor Tnormalized 2 k⇥n⇥r⇥c⇥2, which is160
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I. Ball Rolling Experiment II. Stable Grasp Task
(a)

(b)

III. D’Claw Cap Opening Task

Figure 3: (I) Ball rolling experiment: The tactile sensors are installed on the lower surface of the pad. The
depth map of the tactile normal forces is shown in (b). The tactile force field is shown in (c) with the arrow
denoting the shear forces and the color denoting the magnitude of the normal force. (II) Stable Grasp Task:
The bar composed of 11 blocks with random densities (the deeper the color, the heavier the block). (a) An
unsuccessful grasp results in rotational patterns in the tactile force field and (b) a successful grasp requires the
gripper to adjust the grasp location to the center of mass of the bar. (III) D’Claw Cap Opening Task: The
tactile sensors (white dots) are installed at the three hemisphere fingertips of the hand. We map each tactile
point at one fingertip onto a 2D image plane and visualize the tactile forces field of three fingertips on the right.

our normalized tactile flow map representation. For the tactile shear forces {T {1:k,1:n}
sx , T

{1:k,1:n}
sy }161

acquired from the simulation, we conduct the same normalization process as Eq. 5.162

Intuitively speaking, the normalized tactile flow map provides the directional information about the163

relative motion of the markers induced by the contact forces, and it also keeps the relative tactile164

load magnitude relationships among different sensors and different time steps so as to preserve the165

meaningful spatial and temporal information about the contact. For our sim-to-real experiments,166

we only use the shear directional information from the sensor, but the same technique can also be167

applied to the normal directional information via normalizing the depth map of the contact surface168

reconstructed from the GelSlim image [4] across different frames and different sensor pads.169

4 Experiments170

We conduct extensive tactile-based experiments to demonstrate the capability of our approach.1171

We investigate the following questions: (§4.1, §4.2) Can our simulator reliably simulate the high-172

resolution tactile force field at a high speed for RL algorithms? (§4.3) Does the differentiability173

of our simulator provide advantages in policy learning? (§4.4) Is our tactile sensor representation174

flexible enough for sensors with arbitrary geometrical layouts? (§4.5) How does our simulated175

tactile force field compare to the tactile feedback from real sensors, and does our normalized tactile176

flow map representation help to transfer the policies learned in the simulator to a real robot?177

4.1 Speed and Reliability: High-Resolution Tactile Ball Rolling Experiment178

We design a ball rolling experiment to show the efficacy of the tactile force field generated by our179

simulator and to test the simulation speed. The simulation setup is shown in Fig. 3(I). A high-180

resolution tactile pad (200⇥ 200 markers) touches the marble ball and moves it around. The simu-181

lation step size h = 5 ms, and we compute the tactile force field every 5 steps (i.e., 40 Hz). Fig. 3(I)182

also shows the normal tactile force (represented by a depth map) and the tactile shear forces ac-183

quired from our simulator. For this example, our simulation runs at 1050 frames per second (FPS)184

on a single core of Intel Core i7-9700K CPU. The simulation speed can be further accelerated by185

simply parallelizing it across multiple CPU cores, as we do in the RL experiments.186

4.2 RL Training: Tactile-Based Stable Grasp Task187

Our tactile simulator provides the shear force information on the contact surfaces, which is criti-188

cal for many manipulation tasks. Inspired by the setup in [9], we show the usage of shear force189

information for control and the effectiveness of our tactile simulator in a parallel-jaw bar grasping190

task. As shown in Figure 3(II), the task requires a WSG-50 parallel-jaw gripper to stably grasp a bar191

1See also the supplementary video.
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Figure 4: Tactile-based box pushing task. (a) The goal of the
gripper policy is to use its tactile feedback to push a box to a
randomized target position/orientation. A time-varying external
force is randomly applied on the box during the task. (b) the
training curve for each policy variation is averaged from the five
independent runs with different random seeds.

POS. ERROR ORI. ERROR

GD-Privileged 0.037± 0.002m 0.043± 0.003�

GD-Reduced 0.126± 0.009m 0.255± 0.021�

PPO-Tactile 0.123± 0.034m 0.241± 0.123�

GD-Tactile 0.058± 0.0030.058± 0.0030.058± 0.003m 0.074± 0.0200.074± 0.0200.074± 0.020�

Table 1: Metrics comparison on box
pushing task. We compute the final po-
sition/orientation errors of the best policy
in each run and average the metrics from
five runs for each policy variation. GD-

Privileged gives a reference of the best pos-
sible metrics, and without the privileged
state information of the box, our GD-Tactile

achieves much better position error and ro-
tation error than other two variations.

192

with unknown mass distribution in fewer than 10 attempts. The gripper has two tactile sensors with193

a tactile marker resolution of 13⇥ 10. The bar is composed of 11 blocks where the density of each194

block is randomized. The total mass of the bar ranges in [45, 110] g. We consider a grasp to be a195

failure if the bar tilts more than 0.02 rad after the gripper grasps a bar.196

We use RL to train a control policy that determines the grasp location. The initial grasp location197

is the geometric center of the bar. Based on the tactile sensor readings (the only observation input198

to the policy), the policy outputs a delta change in the grasping location. The policy is a shallow199

CNN (Conv-ReLU-MaxPool-Conv-ReLU-FC-FC) that takes as input the two tactile sensor readings.200

We train the policies with PPO [36] using 32 parallel environments with 20K environment steps in201

total. We train the policies with 3 different random seeds and test them 320 times. The success rate202

is 93.2 ± 1.6%. The average number of attempts taken to stably grasp the bars is 2.1, meaning the203

policy can compute the correct grasping location after a single failed attempt in most cases.204

4.3 Differentiability: Tactile-Based Box Pushing Task205

In this experiment, we design a box pushing task similar to [5] to demonstrate how we can leverage206

the provided analytical gradients to help learn tactile-based control policies better and faster.207

Task Specification As shown in Fig. 4(a), the task here is to use the same WSG-50 parallel jaw208

gripper as §4.2 (with only one finger kept) to push the box to a randomly sampled goal location and209

orientation. The initial position of the box is randomly disturbed. A random external force is applied210

continually on the box, which changes every 0.25 s. More details of the task are in §B.3.211

Comparing Policy Learning Algorithms We train the control policies through four different212

combinations of learning algorithms and observation spaces. GD-Privileged: This variation uses213

the gradient-based optimizer Adam by utilizing the analytical policy gradients computed from our214

differentiable simulation. The policy observation contains all the privileged state information of215

the gripper, the box, and the goal. This policy provides an upper-bound performance reference.216

GD-Reduced: Similar to GD-Privileged, except that the observation space only contains the state217

information that can be acquired on a real system such as the gripper state and the goal. GD-Tactile:218

Other than the state information used in GD-Reduced, we also include the tactile sensor readings in219

the policy input. The policy is trained using the analytical policy gradients. PPO-Tactile: Similar to220

GD-Tactile, but the policy is trained by PPO.221

All the policies are trained to maximize the same reward function (§B.3). We run each variation222

five times with different random seeds, and plot their training curves averaged from five runs in223

Fig. 4(b). We also randomly sample 300 goal poses and measure the final position and orientation224

errors between the box and the goal pose of the best policy from each run, and report the average225

metrics across five seeds in Table 1. The results show that when neither state information of the226

box or tactile information is available (i.e., GD-Reduced), the policy cannot reliably push the box227

to the target location since the gripper has no any clue when the box goes outside of the control of228
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the gripper due to the random initial box position perturbation and the random external forces. With229

tactile information feedback (i.e., PPO-Tactile and GD-Tactile), the gripper has this tactile infor-230

mation to keep the gripper touching the box and allowing it to push the box to the goal effectively.231

However, the high dimensional tactile observation space results in higher computational cost with232

PPO which relies on stochastic samples to estimate the policy gradients. In contrast, with the help233

of our differentiable tactile simulation, GD-Tactile makes use of the analytical policy gradients and234

leads to faster policy learning and better policy performance.235

4.4 Flexibility: Tactile Sensor Simulation on Curved Surfaces236

To demonstrate that our method supports tactile sensors on curved surfaces, we train a D’Claw [37]237

tri-finger hand to open a cap on a bottle. We put the tactile sensors on the three rounded fingertips238

as shown in Fig. 3(III). The sensor layout on each fingertip is a hemisphere, and we use evenly-239

spaced 302 tactile markers. We build a coordinate mapping to project the marker positions on the240

3D surface into a 20⇥20 2D array (with some empty values around the boundary). Fig. 3(III) shows241

that our simulation can produce reliable and realistic tactile sensor readings on a rounded fingertip.242

The task is to open a cap using the D’Claw hand. The position and the radius of the cap are random-243

ized and unknown. There is also unknown random damping between the cap and the bottle. The task244

is considered a success if the cap is rotated by 45�. The only observation data that the policy gets245

are the angles of each joint, fingertip positions, and the tactile sensor readings. This task is similar246

to how we open caps by just using proprioception sensory data and tactile feedback on the fingers247

without knowing the exact size and location of the cap. The policy outputs the delta change on the248

joint angles. We again use PPO to train the policy (a shallow CNN) using 32 parallel environments.249

To show that the tactile sensors are useful in this task, we also train a baseline policy (a simple MLP250

policy) where the policy only takes as input the joint angles and fingertip positions. With tactile251

sensor readings, policies learn significantly faster and achieve an 87.3% success rate, while policies252

only achieve a 59.7% success rate when tactile sensor information is unavailable. More details about253

task setup and results are provided in §B.4.254

4.5 Zero-Shot Sim-to-Real: Tactile RL Insertion Task255

In this experiment, we show the quality of the simulated tactile feedback when compared to the256

tactile sensing obtained from the real system, and demonstrate how to do zero-shot transfer for the257

policies learned in simulation to the real robot via our normalized tactile flow map representation.258

Task Specification We experiment on the tactile-RL insertion task similar to [10]. In this task, a259

gripper (same as in §4.2) is controlled to insert a cuboid object into a rectangle-shaped hole with260

a random initial pose misalignment. The insertion process is modeled as an episodic policy that261

iterates between open-loop insertion attempts followed by insertion pose adjustments (shown in262

Fig. 2). The robot has up to 15 pose correction attempts, and the robot only has access to tactile263

feedback from the sensors installed on both gripper fingers. For the real robot system, we use a264

6-DoF ABB IRB 120 robot arm with a WSG-50 parallel jaw gripper. On each side of the gripper265

finger, we mount a GelSlim 3.0 tactile sensor that captures the tactile interaction between the fingers266

and the grasped object as a high resolution tactile image. More details are in §B.5.267

This task is more challenging than the stable grasp task (§4.2) because it not only needs to recognize268

the rotational pattern of the tactile field when the object contacts the front/back edges of the hole, but269

also needs to leverage the different magnitude relationship of two sensors’ outputs to tell whether270

the object hits the left or the right hole edge (Fig. 5). It becomes even more challenging when the271

object hits the hole at four corners, because the robot must recognize nuances in the tactile pattern272

to decide the insertion pose adjustment. Therefore, this task requires a high-quality simulated tactile273

force field in order to transfer the learned policy to the real system successfully.274

Policy Learning via RL We train the control policies with PPO [36] for three types of misalign-275

ments. Rotation: The object is initialized at the hole’s center and has random rotation misalignment276

around the vertical axis. The action of the policy is the angle adjustment in the next insertion at-277

tempt. Translation: The object has randomly initialized translation misalignment to the hole and no278
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(a) contact at the left edge (b) contact at the right edge (c) contact at the back edge (d) contact at the front edge

Figure 5: Comparison of the normalized tactile flow maps. The flow maps in the top blue boxes are from
simulation (with noise added), while the flow maps in the bottom red boxes are produced from the real GelSlim
sensor. In each box, the two flow maps (left and right) are for two tactile pads on the two gripper fingers.

rotation misalignment. The action space in this case is two dimensional for the translational correc-279

tion on the x-y plane. Rotation & Translation: The object has both rotation and translation initial280

misalignments. The action space of the policy is three dimensional.281

During training, we convert the simulated tactile force field into our normalized tactile flow map rep-282

resentation (§3.4), and treat the resulting tactile flow map as a 13⇥10 flow “image” with 4 channels283

(2 sensors and 2 shear components of tactile forces). We model the policy by a convolutional RNN284

to leverage more information from previous attempts. For better sim-to-real performance, we also285

apply the domain randomization technique [38] on contact parameters, tactile sensor parameters,286

grasp forces, grasp height and tactile readings, to increase the robustness of the learned policies.287

More details of policy learning are provided in §B.5.288

TASK SUCCESS ATTEMPTS

R 100% 1.53
T 100% 2.33
R&T 83% 4.81

Table 2: Zero-shot sim-to-
real performance of the tac-
tile RL insertion policies.

Experiment Results We first qualitatively compare the normalized289

tactile flow maps generated by simulation and by real GelSlim sen-290

sors. We plot the normalized tactile flow maps at four representative291

contact configurations (i.e., object contacts at different edges of the292

hole) [10] in Fig. 5, which shows that our simulation is able to pro-293

duce highly realistic patterns in those contact configurations. We then294

deploy the policies learned in simulation on real hardware and quan-295

titatively test its zero-shot performance by conducting 100 insertion296

experiments under different initial pose misalignments. As reported in Table 2, our zero-shot pol-297

icy transfer achieves 100% success rates on Rotation and Translation tasks. We also calculate the298

average number of pose corrections for the successful experiments. The average number of pose299

corrections is 1.53 for the Rotation task and 2.33 for the Translation task, which means that the pol-300

icy is able to successfully infer the pose misalignment after just one or two failed attempts in most301

experiments. Given the policies being purely trained with simulated tactile data, the high success302

rates indicate that our simulation is able to produce normalized tactile flow maps with highly real-303

istic tactile pattern and magnitude to help the gripper to infer the exact adjustment. For challenging304

Rotation & Translation task, our zero-shot transferred policy also achieves 83% success rate and305

4.81 pose corrections in average. For comparison, Dong et al. [10] achieve 89.6% success rate and306

5.42 times pose adjustments for the cuboid object, with a policy trained directly on the real hardware307

from a pre-trained policy and with a carefully designed task curriculum. Our policy is trained from308

scratch only in simulation without observing any real-world data.309

5 Limitations and Future Work310

We presented an efficient differentiable simulator that can handle dense tactile force fields with311

both normal and shear components. When the tactile pad is very soft (e.g., TacTip), its dynamics312

cannot be well approximated by our penalty-based approach. An interesting direction to explore is313

how to efficiently simulate such soft tactile sensors. We demonstrated with the box pushing task314

(§4.3) the potential advantage of differentiable simulators. However, how to effectively leverage315

analytical gradients for more complex tactile-based tasks is still an open question and it may require316

more advanced policy learning algorithms [39]. Furthermore, in the sim-to-real experiment (§4.5),317

the zero-shot success rate of Rotation & Translation is not perfect. This is probably due to some318

intricacies of the real hardware that are difficult to model in our simulation. We believe that further319

fine-tuning the learned policies with a few shots on the real hardware will likely lead to improved320

performance.321
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