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Abstract

In contrast to the popularity of stereoscopic 3D (S3D) movies in movie theaters,
the adoption of S3D at home is low. It is widely believed that watching S3D with
glasses is not the pratical approach for a home setting. A much more appealing
approach is to use automultiscopic displays that provide a glasses-free 3D experience
to multiple viewers. The main technical challenge that hampers the adaptation of
this technology is the lack of multi-view content. We develop a real-time system that
converts stereoscopic video to a high-quality, multi-view video, which can be directly
fed to automultiscopic displays. Our algorithm uses a wavelet-based decomposition of
stereoscopic images with per-wavelet disparity estimation. One key contribution lies
in combining Lagrangian and Eulerian approaches. This allows us to leverage their
complementary advantages. The method achieves real-time performance on current
GPUs. Its design also enables an easy hardware implementation, demonstrated using
a field-programmable gate array.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor
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Chapter 1

Introduction

Stereoscopic 3D (S3D) has become much more popular during the last decade. Today,

almost all movie blockbusters are also released in a stereo format. However, the

popularity of S3D in the movie theaters has not translated to the equivalent popularity

at homes. Despite the fact that most current TV sets support 3D glasses and the

content providers offer streaming stereoscopic content, the adoption of S3D at home

remains very low. It is widely believed that the use of stereoscopic glasses is not

practical in a home setting 131.

We believe that the right approach to 3D viewing at home is to use automultiscopic

displays that provide a glasses-free, 3D stereoscopic experience to multiple viewers

in the same space. These displays are rapidly improving due to the industry drive

for a higher and higher display resolution (e.g., even current 4K UHD displays can

be easily converted to a 3D automultiscopic display with 8 views and an HD spatial

resolution). However, using these displays presents one fundamental challenge - while

there is plenty of stereoscopic content available, there is practically no multi-view

content for automultiscopic displays. Therefore, there is a clear need for methods

and systems that can convert streaming, high-resolution, stereoscopic video available

from the standard delivery channels to a high-quality, multi-view content in real-

time. Furthermore, the methods should be amenable to hardware implementations

such that they can be incorporated in future streaming TV devices and smart TV-sets.

Finally, the systems should support some customization of the 3D video - viewers

13



desire a different amount of the 3D experience.

ML a

View 1 View 2 View 4 View 5 View 7 View 8

Figure 1-1: The figure presents multi-view content (8 views) generated from stereo-
scopic input (the views marked in blue) using our method. The view synthesis
and inter-view aliasing are performed in real-time providing high-quality content.
The inmages can ie viewed in stereo using cross fusion. Scene copyright: Blender foundation
(h it ps: orange.blender.org )

We propose a method that, addresses all of the requirements we have outlined. Our

method works with existing stereoscopic content expanding it to a high-resolution.

high-quality, multi-view format in real-time (Figure 1-1). Furthermore. the method

can be implemented efficiently in hardware and it naturally supports retargeting of

the disparities. Our technique is inspired by the recent advances in phase-based

approaches 19. 10. 32. 5]. Such methods use an Eulerian approach for novel view

synthesis, which provides robustness. enables inter-view anti-aliasing at almost no

cost, and allows for simple disparity manipulation. However. in contrast to standard

depth imnage-based rendering methods 125], such techniques are limited to smiall dis-

parities. Inspired by the work in the physics-based simulation 17], we overcome this

problem by combining a phase-based approach (an Eulerian niethod) with standard

depth image-based rendering (a Lagrangian approach). Our technique starts by de-

composing the input signal using the steerable pyramid 129. 28]. The basis functions

of this transform resemble Gabor-like wavelets. therefore. for the purpose of this pa-

per we will refer to them as wavelets. Next, depth information is estimated for each

wavelet separately using a combination of standard disparity estimation and phase-

based ineasure. To synthesize new views, our method applies a wavelet re-projection

which moves wavelets according to their disparities. Such an approach allows us to

both handle large disparities and preserve all the advantages of the Eulerian approach

151. Furthermore. our technique (an perform nonlinear depth manipulations [14j. We

demonstrate that our method can provide real-time performance both on a GPU and

a field-programmnable gate array (FPGA). We evaluate our method on a variety of
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stereoscopic test scenes and Hollywood movies.

1.1 Contributions

The contributions of this thesis include:

(1) An efficient algorithm to expand existing stereoscopic content to a multi-view

format in high quality, suitable for high-resolution automultiscopic displays. The core

of the algorithm lies in a novel combination of Lagrangian and Eulerian approaches,

which allows us to leverage their complementary advantages to handle challenging

cases such as large disparity, motion blur, and complex light effects.

(2) Integration of the proposed view expansion algorithm with inter-view antialias-

ing and non-linear depth manipulation, which are crucial steps for delivering a good

and customizable 3D viewing experience.

(3) An extensive evaluation of the proposed algorithm, including comparisons with

existing Lagrangian and Eulerian methods, comparisons with ground-truth views from

lightfield datasets, and a detailed evaluation on the challenging cases.

(4) Real-time hardware implementations on both a GPU and an FPGA, demon-

strating the efficiency and the ease of hardware-adoption of the proposed algorithm.

We believe that this would be the first step toward a glasses-free 3D experience at

home.

1.2 Thesis Outline

This thesis is structured as follows. Chapter 2 reviews state-of-the-art approaches

to generate multi-view content for automultiscopic displays. Chapter 3 describes the

steps of the proposed view expansion algorithm based on a per-wavelet disparity

representation. Chapter 4 discusses the two real-time hardware implementations of

our algorithm, ultilizing a GPU and an FPGA. Chapter 5 compares the image quality

of the synthesized views and the depth reproduction with existing Lagrangian and

Eulerian approaches. Chapter 6 outlines the strengths and the limitations of our

15



system, and Chapter 7 concludes the thesis.
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Chapter 2

Previous Work

In contrast to standard displays, automultiscopic displays enable reproduction of view

dependent effects. Although the advantages of such systems are numerous, a big and

unsolved challenge is the content production for such screen.

2.1 Multi-view Content Capture

A straightforward method to acquire content for automultiscopic displays is to capture

it. This requires recording the scene with multiple cameras positioned at different

locations, usually arranged in a camera array setup, capturing directly the views that

are later displayed on the screen 1211. More advanced solutions enable acquiring over

hundreds of views [35, 34]. Camera arrays, regardless of the number of cameras,

are expensive and hard to manage due to their size. This makes this technology

impractical from the commercial point of view. An alternative to these setups are

small compact lighfield cameras 124, 171. In order to provide multiple views, they use

a lenslet array placed in front of their sensors to trade spatial for angular resolution.

More recently Marwah et al. 1191 proposed an improved architecture where the loss of

spatial resolution is minimized. Although the image quality provided by these setups

is an issue, the main limitation is the small amount of parallax that is supported.

Because these devices are very compact, recorded views correspond to very close

locations. This is insufficient to create true parallax and 3D effects on automultiscopic

17



displays.

2.2 Image-based Rendering

If multi-view content cannot be captured directly, it is possible to use software tech-

niques, so-called image-based rendering, to synthesize additional views from a stereo-

scopic input. These techniques can be categorized into Lagrangian, which explicitly

recover depth information to synthesize novel views, and Eulerian, which rely on local

content changes that are amplified to obtain new views.

2.2.1 Lagrangian Techniques

Lagrangian techniques recover depth information first [1], and then use re-projection

[181 to create novel.views [30]. Using such approach, Rietchert et al. [25] built a

system for real-time stereo to multi-view conversion. Although many sophisticated

techniques for depth estimation have been proposed, this is still a challenging problem

especially in the case of real-time applications. Lagrangian methods still suffer from

low quality depth maps. This problem, to some extent, is overcome when sparse depth

informtion is used together with an image warping technique [8, 31]. Such methods

have an additional advantage as they do not need to deal with missing information

in disocclusion regions. However, this comes at the price of poor depth quality at

sharp depth discontinuities and in regions with fine depth details. The resolution of

the mesh that is used for synthesizing novel views is too coarse to handle such cases.

Furthermore, Lagrangian approaches rely explicitly on per-pixel depth information,

which is insufficient when the depth cannot be uniquely defined. Examples include

motion blur, depth-of-field effects, and transparencies, which commonly appear in

the case of movie content. Hardware implementations were proposed for both depth-

based rendering and image warping. Work by Rietchert et al. [251, Liao et al. [15] also

presented a hardware implementation for a depth based approach, and more recently,

Schaffner et al. [26] presented an implementation of warping based technique.
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2.2.2 Eulerian Techniques

Eulerian techniques estimate local changes using local phase information, as opposed

to recovering depth information explicitly. This is inspired by work on both disparity

and optical-flow estimation using local phase information [9, 10]. Recently, Eulerian

approaches have shown a step towards more robust view synthesis [32, 5]. There are

two main advantages of these techniques. First, they do not rely on per-pixel informa-

tion. Instead, the phase information being used is defined separately for each location

and frequency. This turns out to be a great advantage over Lagrangian approaches

in difficult cases where per-pixel depth cannot be reliably estimated [5]. Second,

the phase-based disparity provides an accurate, subpixel estimation, as opposed to

Lagrangian techniques which provide discretized disparity information. Phase-based

techniques, however, have one significant limitation: the disparity/depth range that

they can deal with is relatively low. Although there exist multiscale phase-based dis-

parity estimation techniques which extend the supported disparity range [23, 371, their

goal is to estimate per-pixel disparity estimation. Instead, we address the problem of

limited disparity support by combining a phase-based technique with Lagrangian ap-

proach which pre-aligns views to reduce disparity so that the Eulerian approach can

be applied. In this regard, the most similar work to ours is the technique proposed

by Zhang et al. 136], which addresses the problem of reconstructing light field from a

micro-baseline image pair. Similarly to our work, they also rely both on disparity and

phase information. However, in contrast to their view synthesis method which relies

on per-pixel disparity information, we use a concept of per-wavelet disparity which

provides much richer representation. Another difference is that we propose a real-time

solution which is capable of performing the stereo-to-multi-view conversion on-the-fly.

To our knowledge there were no attempts of designing hardware implementation of

Eulerian techniques for view expansion.
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2.3 Post-processing Methods

Capturing or computing high-quality views is not sufficient to assure perfect viewing

quality. Due to the limited angular resolution of automultiscopic screens, additional

post-processing steps are usually required. First, a proper filtering needs to be applied

to avoid inter-view aliasing. In this context, Zwicker et al. [38] presented a technique

that accounts for the aliasing during the registration and display. They provide a

filtering approach that removes both these artifacts. It has also been demonstrated

that inter-view antialiasing can be easily incorporated into Eularian view synthesis

15]. Automultiscopic displays also cannot reproduce all visual cues, in particular

accommodation whose lack can lead to visual discomfort [271. To overcome this

limitation, depth presented on such a display needs to be carefully managed [5, 20, 2J.

Using post-processing techniques, it is also possible to reduce hotspotting, which is

an intrinsic artifact of automultiscopic displays [6].
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Chapter 3

Algorithm

In this section, we describe a new method for expanding stereoscopic content to its

multi-view version which can be later displayed on an automultiscopic screen. The

core of our method is a wavelet representation with per-wavelet disparity estimation.

We also present a new image-based rendering approach designed for such a decom-

position. Our method takes as an input the left and the right views together with a

corresponding pair of disparity maps. The main advantage of our approach is that

those maps can be of low quality and therefore computed very efficiently. In this

work, the real-time approach proposed in [13] is used. Additionally, we assume that

the input stereoscopic images are rectified f11].

Our technique consists of two main steps. First (Section 3.1), we analyze the

stereoscopic content, decompose it into wavelet representation and compute per-

wavelet disparity information. In this step, we compensate for the low quality of

input disparity map by incorporating local phase information. Next (Section 3.2),

we use the estimated per-wavelet disparity information to synthesize novel views.

Additionally (Section 3.3), we discuss additional processing steps of inter-view an-

tialiasing and nonlinear depth manipulations, which are essential to provide a good

viewing experience. In our work, we consider only displays that reproduce horizontal

parallax.

21
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Stereo image + disparity Pair of 1D Initial correspondence Wavelets Phase difference Per-wavelet disparity
scanline signals (amplitude/phase)

Figure 3-1: In contrast to most approaches where per-pixel disparity is estimated,
in our method we consider a wavelet as a basic element of a picture, and estimate
disparity for each of them separately. To this end (from left to right), we start
with a stereoscopic image pair and consider each scanline of the stereoscopic image
independently. We first decompose the scanlines into wavelets. Next. we find the
initial correspondence between wavelets from the left view and the wavelets from the
right views based on the input disparity maps. The difference in the positions of the
corresponding wavelets defines the initial disparity information. To further refine it.
the phase difference of the corresponding wavelets is computed and combined with
the initial disparity estimation .

3.1 Per-wavelet Disparity Estimation

Disparity is an important cue to synthesize novel views. For stereoscopic content.

disparity maps (D, and Dr) encode the correspondence between left and right views

(L and R). More formally. if for a given position in the world space, its projections

into the left and the right views are x, and x, the disparity is defined as the distance

between those locations in the screen space. A signed distance is considered to dis-

tinguish between locations in front and behind the zero disparity plane. For rectified

views disparity maps represent a horizontal translation and can be defined as follows:

DI(xi) = xi - x,. and Dr(xr) = Xrx - xl, where x, and x,, denote the horizontal

components of x, and Xr-

Ini contrast to previous approaches, we consider per-wavelet, instead of per-pixel,

disparity. This allows us to use phase information to improve the quality of the

estimates and overcome limitations of previous Lagrangian and Eulerian approaches.

To compute per-wavelet disparities, we first decompose the input images into wavelet

representations. Then, for each wavelet, the initial disparity is computed from the

input disparity maps. In the next step, this information is refined by additionally

considering local phase information. The whole process is depicted in Figure 3-1.
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Our disparity information is not a single disparity map. Instead. we obtain one

disparity map for each pyramid level.

3.1.1 Wavelet Decomposition

As both input views are rectified., we can limit our analysis to scanlines. Here. we

consider each pair of corresponding scanlines (1D signals) of the right and left views

separately, and denote them by I, and I,. We decompose each of these signals into

wavelets. To this end, we use a steerable pyramid [29, 281., which originally decomposes

a 2D signal according to spatial scale, orientation and position. In our case. as we

deal with ID signals, we do not obtain orientation differentiation, but we used this

decomposition to obtain local amplitude and phase information, which we exploit in

our technique.

Each of the scanlines (I, and 11) is separately represented as a sum of bases

functions, wavelets b 1 , which are similar to Gabor wavelets, i. e.. they are windowed

sinusoids. We use a steerable filter set by, where f E F specifies the central frequency

of the filter. The frequency response of each filter is:

1r 1
ib () cos(- log"!( /f )) . II( log',( / )).2 9

where H is a rectangular function and w defines the width of filters it is equal to the

ratio of central frequencies of neighboring levels. In this work. we perform an octave

decomposition and use ! = 2. An additional low-pass filter bo collects the residual

low-frequency components. The frequency responses correspond to cosine functions

in the log-frequency domain(Figure 3-2).

1.0

0.5 --

0.0 - -/ I

10- Frequency 10'

Figure 3-2: Filter bank used for wavelet decomposition
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Using such a filter bank, we can compute a single wavelet coefficient for a given

location x and frequency f as

Afx = (bf * I)(x),

where * denotes a convolution. Afx is a complex number which contains information

about local phase and amplitude. After the signal is decomposed into wavelets we

can obtain the original signal as:

I = 2Re length() Z Afxbf(t - x),
f E. xEX

where F is a discrete set of frequencies and Xf is a set of locations at which wavelets

are defined. The factor 2 compensates here for the fact that the complex wavelets

are obtained only from positive frequency components, and factor length(I)/lXI is

necessary to compensate for the energy loss due to only IXf wavelets representing

the signal at each frequency. To prevent aliasing, Xf is chosen to evenly sample the

range with at least 2fw samples.

3.1.2 Initial Wavelet Disparity

After decomposing I, and I1 into wavelets, we establish a correspondence between

them using input disparity maps (D, and D1 ). More precisely, for each wavelet

Vfx from I, we find the corresponding wavelet lfx, from I,. To this end, for each

wavelet V),/, we compute a local disparity from Dr. Because the signal of each wavelet

covers a certain spatial extent, there is no direct correspondence between wavelets and

disparity values in Dr. To account for this, we compute the disparity of each wavelet

as an average of disparity in its local neighborhood. The size of this neighborhood is

equal to the spacing between wavelet positions. Formally, the computed disparity for

wavelet bp, can be defined as:

drfx = E Dr(X)/I S|, S = {x' E R : Ix' - x <; | I/ | X |}.
xES
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0I.x, is then found as the closest wavelet to the location x - drfx. We perform the

same step for all wavelets from Ii.

3.1.3 Wavelet Disparity Refinement

The disparity information encoded in the correspondence between wavelets is often

inaccurate due to insufficient quality of the input disparity maps. However, our

observation is that the initial correspondence serves as a good pre-alignment of the

left and the right view and therefore the residual disparity which is not captured is

usually small. Recently, it has been demonstrated that such small displacements are

well captured by phase information which can be used for novel view synthesis [32, 5]

Inspired by this, we further improve our initial disparity using phase information of

the individual wavelets. To this end, we compute a phase difference between each

pair of corresponding wavelets:

a = arg(Arfx,) - arg(AIxf ).

Next, for the wavelets centered around frequency f, the phase difference can be

transformed into disparity by dividing it by f/27r. As mentioned before, after our

initial pre-alignment the remaining phase difference encodes residual disparity which

was not captured by the initial correspondence. Hence, we can improve the disparity

information for each wavelet 0,f x by adding 0.5 Ap - f/7r to the previously estimated

disparity x - x'. For color images, we compute phase differences for each channel

separately, and combine them using a weighted sum to get the disparity refinement.

The weights are proportional to the wavelet amplitudes to penalize phase for weak

signals that can be poorly estimated.

Our per-wavelet disparity estimation is performed on individual 1D scanlines of the

stereo image pair. This may lead to inconsistent disparity values in neighboring rows.

Therefore, we apply an additional filtering to improve the coherence of the disparity

estimation. More precisely, we filter the per-wavelet disparity using 2D median filter

with a kernel size equal to twice the spacing between wavelets. Additionally, to
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penalize large phase differences between wavelets, we weight the contribution of each

wavelet using a Gaussian function defined on the phase differences with a- = 7r/4.

As a result of this step we obtain an accurate disparity estimation for each wavelet.

In particular, in contrast to standard depth-based rendering where there is only one

depth value per pixel, we obtain information for different frequencies separately. As

we show later (Section 5), this allows us to handle difficult cases when we use this infor-

mation for rendering novel views. In the remainder of this section we will demonstrate

how our per-wavelet disparity information can be used for efficient view synthesis.

3.2 Novel Views Reconstruction

To reconstruct novel views, we use a technique similar to pixel re-projection [18].

However, in our case we deal with wavelet decomposition and instead of reprojecting

pixels according to underlying disparities, we reproject entire wavelets.

In order to compute novel views, we modify the position of each wavelet. We per-

form this operation for each scanline separately. The new position for each wavelet

40 at location x and disparity d is computed as x + a -d, where parameter a directly

controls the new viewing position. After the position of each wavelet is updated, we

convert the displaced wavelets back into uniform-spaced samples using non-uniform

Fourier transform as described in [161. The non-uniform Fourier transform process

utilizes an oversampled grid with a oversampling factor m = 2. Each displaced

wavelet is approximated as a weighted sum of q = 4 nearby samples on the over-

sampled grid, where the weights depend on the fractional residual in the displaced

location. After the contributions from all wavelets are summed, a low-pass filter is

used to downsample back into the original grid. We refer to the original paper for

more details. After the wavelets are converted back to the original uniform grid, we

can reconstruct the ID signal using pyramid reconstruction. For lowest frequency

wavelets corresponding to filter bo, a linear interpolation of the wavelet values on the

uniform grid is used. This is for preventing low-passed wavelets from accumulating

and creating color bands.
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3.2.1 Occlusions and Disocclusions

There might be two potential problems resulting from the non-uniform sampling.

First, there is missing information in the undersampled regions. This lack of informa-

tion does not cause significant problems, since information from the lower frequency

levels will fill those disocclusions smoothly. However, as we move wavelets, some

of them may overlap. This leads to ghostings with overlapping background and

foreground signals. To avoid this, we detect occluded wavelets and attenuate their

amplitude.

o original sampling positions

* wavelet positions

occlusion regions

Vr

d -d-

-1 0 v Sampling position

Figure 3-3: We resolve occlusion of wavelet ' by attenuating its amplitude. The

attenuation is proportional to the part of the wavelet that is occluded by nearby

foreground wavelets 01 and 'i.

To this end, for a given wavelet 4, we first find the closest wavelets to the left <>i and

to the right VI, that have smaller disparities (i. e., they are in front of v'). It is sufficient

to consider wavelets corresponding to the same frequency. We then compute the

portion of the wavelet 4' that is occluded by 01 and gr. We assume that one wavelet

completely occludes the other wavelet if the distance between them is at most half of

the original sampling distance. As a result, we defined the occlusion using distances

between sampling locations of 0 and the other two wavelets, i. e., the occlusion caused

by 4'j is defined as 01 = max(2 - 2d1 , 0) and for 4, by 0, = max(2 - 2dr, 0). Here, d,

and d, are the distances, as marked in (Figure 3-3), and the original spacing between

wavelets is assumed to be 1. The occlusions have constant value 1, if the neighboring

wavelet moves half way to 4', and 0, if the distance between them is at least the

original sampling distance. To combine occlusions for both wavelets, we define the
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effective occlusion of wavelet 0 as Op = 01 + 0,. Op = 0 indicates that neither 4"
nor /, occlude 4. O, = 1 indicates that wavelet 4 is completely occluded. Next,

we attenuate wavelet 4 according to a smooth function s that interpolates between

0 and 1.

1 if X >1

s(x)= 3x2 - 2x 3 if X - (0,1)

0 ifX<0

The amplitude of the attenuated wavelet is then defined as Ap = s(O) - A0. For

the real-time performance, we find 4i and 4' by first placing all wavelets in buckets

according to their location, and then considering wavelets only from neighboring

buckets within a distance of the wavelet spacing at the current level.

3.3 Additional Processing

A robust view synthesis is usually not enough for creating good content for a multi-

view display. In order to enhance the quality and provide better experience, an

inter-view antialiasing filter needs to be applied [381. Also, in many cases, it is

also necessary to perform depth manipulations to maintain viewing comfort 127] and

improve perceived depth [14, 4]. Both steps can be easily incorporated into our

method.

3.3.1 Antialiasing

Didyk et al. [5] proposed to perform the inter-view antialiasing by attenuating local

amplitude according to the corresponding phase information. Because in our tech-

nique we rely on a very similar decomposition, the filtering can be performed using

similar technique. To filter a view that was synthesized using our method, we at-

tenuate every wavelet before the view is reconstructed. The amount of attenuation

depends directly on the disparities between neighboring views, which can be easily

obtained from our representation. For a given wavelet at frequency level f with dis-
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parity (. we attenuate its amplitude by nmultiplviig it by (Xp(- ( 2wd )2/2) where (-

is the antialiasing width as (lefined in 151. An example of a synthesized view adi(l its

filtered version is shown in Figure 3-4.

Original Filtered

Figure 3-4: The figure presents a synthesized view using our method (left) and the

same view with the inter-view antialiasing applie(d (right).

3.3.2 Disparity Adjustment

Using our wavelet representation together with per-wavelet lisparity information, we

can easily apply non-linear (lisparity mapping operators. Such operators are usually

(efined( as a disparity mapping function which maps disparity according to certain

goals 114. 41. To apply such a napping to the (lisparities in our iethod. it is sufficient

to apply the function to our estimate of the (lisparities between input views. After-

war(ls. the rest of our view synthesis technique remains unchanged. In Figure 3-5 we

demonstrate one example of such inaiipulations.
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Modified disparities

Figure 3-5: Example of nonlinear disparity renapping. The depth for the foreground

objects are coipressed while maintainling the same (isparities in the background. As
a result. the whole foreground i)art of the scene is pushed behin( the zero (lisparity

plane. The images can be viewed in stereo using red-(yan anaglyplh glasses.
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Chapter 4

Implementations

Our technique provides performance that is necessary to produce multi-view content

for a 4K automultiscopic display in real-time. In this section, we describe two imple-

mentations: a CUDA-based GPU implementation and a hardware implementation

using an FPGA with an ARM processors.

4.1 GPU Implementation

We produce content for an 8 view 4K (3840 x 2160) automultiscopic display, where

each of the output views has a resolution of 960 x 1080. Our method is implemented

on a GPU using CUDA. To test its performance, we run it on the Nvidia GeForce

GTX Titan Z graphics card. For such a setup, our technique is able to perform the

conversion with the additional steps in 25 - 26 fps for all sequences presented. The

breakdown of the timing and memory usages is presented in Table 4.1.

Stage Timing (%) Memory (GB)
Pyramid decomposition 9.9 1.05

Initial disparity estimation 4.9 0.31
Per-wavelet disparity refinement 18.5 0.23

Wavelet re-projection 30.5 0.50
Pyramid reconstruction 36.2 1.55

Table 4.1: Performance breakdown for the individual steps of our GPU implementa-
tion.
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Sp 2 x Pyramid W p 8 x Pyramid Pyramid Reconstruction

Figure 4-1: This figure presents how our method can be mapped to hardware archi-
tecture composed of an FPGA board with ARM processors.

4.2 FPGA Implementation

One advantage of our technique is that most stages in our algorithm can be done

in a scan-line fashion. This eliminates the need for any external memory during the

computation of these stages and, thus, it is suitable for a hardware implementation

such as an FPGA or an ASIC. Our technique requires only low resolution disparity

maps. Therefore, we leverage the ARM processors inside the SoC for this task. The

ARM processor computes these disparity maps at the 240 x 180 resolution at 24

FPS.

Figure 4-1 describes the stages in our hardware implementation. The first stage

decomposes the frame into two pyramids: one for the left view and the second for the

right view. Both pyramids are sent to the second stage. In the second stage, each

wavelet in the pyramid are re-projected according to the disparity from the ARM

processor. The re-projected wavelets are filtered similarly to 116] and sent to the final

stage. The final stage reconstructs views from the synthesized pyramids and outputs

the result.

We test each stage of our implementation on the FPGA System-On-Chip (SoC)

Xilinx ZC706 development board using Xilinx Vivado HLS 2015.4 software. The

FPGA SoC has two ARM processors running up to 1GHz and programmable logic

with 350K logic cells and a total of 19Mb of internal RAM. Table 4.2 shows the

resource utilization of our implementation. Each stage is customized to the target

generating 8 views of 512x 540 resolution at 24 FPS while running at 150MHz. The

total memory utilization of our implementation is only 13Mb of the internal memory.

This is a much smaller memory footprint than our current GPU implementation.

Moreover, the current FPGA implementation uses only about 50% of the hardware

resource on the FPGA we are using. Therefore, it is possible to double the resolution
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to get a FullHD resolution in the future implementations.

Stage
Pyramid decomposition
Wavelet re-projection

Pyramid reconstruction

RAMs (Kb)
976

12,960
1,476

Table 4.2: Resource utillization on our FPGA implementation.
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DSPs
26

427
75

LUTs
14K
74K
13k

FFs
12K
85k
20K
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Chapter 5

Results and Comparisons

Our technique provides an up-conversion from stereoscopic content to its multi-view

version. An example of applying our method to stereoscopic content is presented in

Figure 1-1. In order to evaluate the performance of the technique, we consider a

scenario of producing content for an 8-view 4K automultiscopic display. For the main

evaluation we used four stereoscopic video sequences. Their representative frames

are shown in Figure 5-1. To demonstrate both view interpolation and extrapolation,

for two sequences (ELEPHANT and SKULL ROCK), we considered scenarios where

two out of six additional views are located in-between the original views. For the

other two sequences (BBB and BALL), we perform only extrapolation. Although we

provide the evaluation only for animation sequences, we believe that their complexity

justifies the extrapolation of our claims to real-world footage.

5.1 Comparison to State-of-the-art

Here, we compare our method to both Lagragian and Eulerian techniques. The

first group consists of a depth image-based rendering (DIBR) technique [25] and

an image-domain warping (IDW) technique [26]. Both of them target a real-time

conversion of stereoscopic content to its multi-view version. As the source code of

this first method is not publicly available, we reimplemented it. We only replaced

their disparity computation with the method we use. We left, however, the pre-
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processing steps which improve the disparity information. For the second technique,

we provide a direct comparison to the results provided in the original paper. We

compare also to the Eulerian method proposed by Didyk et al. 151 which applies a

phase-based rendering approacl (PBR). For all the methods. we present here only

iildividllal views.

I i

f
jM 7

ELEPHANT BBB

SKULL ROCK BALL

Figure 5-1: Representative frames of four stereoscopic -video sequences used i1 our

evaluation. (-Elephants Dreamms" &r "Big Buck Bunny @ by Blender Foundation.

,*The Curse of Skull Roc(k @ by Red Star Studio Ltd.. "Ball" @ by Eric Deren
Dzignlight Studios)

5.1.1 Lagrangian Approach

The artifacts produced by both methods can be categorized into two groups. The

first group consists of errors due to poor depthim quality. The second group includes

artifacts coming from unsuccessful view reconstruction.

In order to assure real-time performance, depth quality is often insufficient to

produce good results. III particular. both our technique and the one proposed by

Riechert et al. 1251 use depth map computed for downsamipled images. This leads

to disparity discretization artifacts. Using such disparity maps for image-based ren-

dering results in discontinuities in perceived depth. and significant cardboard effect
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Figure 5-2: The figure pireseilts a conmparison of our technique t~o a recent image-
dlonlainl warping teclhniqlue 1261. The top row images come directly from the original
piiblication, while the bottom row contains corresponding results of our method. The
stereoscopic inlages are lpresented in anaglyph colors. Besides the first image (tihe
most left one), the images were reported as (difficult cases for IDW nmethodi. In all
cases they suffer froni inaccuracies with the sparse depth representation - artifacts
include flattening the scene as well as losing the sharp (leptih discontinuities. Results

provided by our technique offer more correct depth reproductions. At the same tinme.
for the images on which IDWV teciique performs well (the first image on the left).
our technique rovides equally good results.

1221. Whereas in the DIBR method. these artifacts can be easily observed, our step

of phlase-based1 depth correctioln can recover from these artifacts and~ provide more

correct depth precept (Figure 5-3). The problemn of iacurate lepth is addtlressed

in image-lomai waring techniques s21(T h as 1261. Such nethiodls overcome the prob-

lm iy warpinlg the ilage according to sparse depth information. For example the

albove work uses mesh resolution 180 x 100. Although this avoids many visual arti-

facts related to depth estimation, it introduces other type of artifacts. As the (depth

information is represented using sparse set of features. often depth (etails cannot be

reprocluce by this technique. We (ompare our technique to 1261 in Figure 5-2. In

all cases, the IDW technique (hoes not introduce visible 2D artifacts. however. when

significant (depth variations are lpreseilt. it attempts to flatten the scene and smooth

out sdarp dept di thscoentinuities.

Lagrangian techniques have also significant problems when dseith information is

not clearly defined. This can be usually observed for comnlex efects such as high-

lights. depth-of-field or motion blur. In sch situatio s standard depth asede tech-

nique is usually unable to correctly synthesize novel views. In contrast. our techiqde.

by leveraging the advantages of Eulerian approaches. (a handle such sitatio mpore

accurately (Figure 5-5). This is because we do not use per-pixel disparity i or.mation
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(Flit'' *ri

Figure 5-3: Comparison of the same stereoscopic view in red-cyan anaglyph. DIBR

techniques produce large depth quantization leading to cardboard effect which can

be observed on the trunk carried by the character as well as on the ground. Our

technique, although it uses the same disparity map as an input can recover from

these artifacts due to the additional phase informat ion.

but rather per-wavelet disparity. which provides us with more information. In the

case of motion blur and depth-of-field effects. Lagrangian techniques tend to intro-

duce sharp edges that are not present in the original frames. This is also mentioned

in [25|. Our technique does not introduce such artifacts (Figure 5-6).

Rendering novel views is challenging in places where disocclusions occur. Due

to lack of information in these regions . usually a hole filling technique needs to be

applied. DIBR method. due to the performance constraints. performs simple linear

interpolation of neighboring pixels. Visually, this leads to an effect of stretching con-

tent over the disoccluded regions. Our technique does not need to explicitly perform

hole filling. Instead. the missing information is filled during non-uniform FFT. As a

result the local frequency spectrum in disoccluded regions is similar to the one in the

neighborhood, which can be considered as hallucinating the unknown content. This is
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different from the interpolation performed by DIBR which leaves vertical frequencies

and removes horizontal ones.

5.1.2 Eulerian Approach

The major limitation of phase-based techniques is that they can handle only a limited

range of disparities 151. In our work, we overcome this problem by combining a phase-

based approach with a standard Lagrangian approach. As a result. our technique can

handle much larger input disparities and apply higher amplification factors (Figure 5-

4). In contrast to PBR., which can apply only linear disparity mapping, our nethod

enables more sophisticated depth manipulations (Figure 3-5).

PBR

Ours

Figure 5-4: PBR approach cannot handle large disparities. As a result the higher
frequencies are wrongly synthesized which leads to significant ringing and blurring.
On the other hand. our method is able to correctly reproduce high frequency content
and the synthesized image is much clearer.
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LAT

0*

r '

Figure 5-5: Comparison of results provided by our technique and DIBR for a chal-
lenging scene with a number of reflections and multiple depth layers. DIBR method
cannot reproduce the correct depth of reflections. tiny particles and the glassy ball. In
contrast our technique by leveraging advantages of Eulerian approach can reproduce
the depth of these elements correctly. The images are shown in red-cyan anaglyph
colors.

5.2 Influence of Disparity Quality

The input to our technique is a pair of disparity maps generated using 113]. The DIBR

technique. that we compare against, uses the same disparity maps, but it performs a

minlmber of processing steps to improve it before it is finally used for view synthesis. To

demonstrate the robustness of our technique to low quality disparity information. we

checked how our technique performs if ground truth disparity information is available.

Figure 5-7 presents results of our and DIBR techniques for three images from the

Middlebury stereo datasets 112j. Additionally, we computed the results using the same

techniques but supplied with ground truthi disparity information. This is indicated

by "*- next to the method names. The results are compared to original views using
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Original

41

DIBR

Ours i 7

Figure 5-6: Motion blur is a difficult case for depth-based rendering. This is due to

undefined depth values where the effect occurs. Here we show one of the original
views and one of the views synthesized using DIB and our method. DIBR uses per-

pixel depth information which is additionally filtered using bilateral-like filter. This
introduces sharp edges in the region of blur. Our technique preserve the blur on the
object boundaries.

SSIM metric 133. and the differences are reported using colormaps. It can be seen

that our technique outperforms the DIBR technique. even though it uses improved

disparity information. At the same time our technique provides similar results to

DIBR technique which relies on ground truth disparity information. Interestingly.

our technique does not significantly benefit from better disparity information. This

demionstrat es that our technique can use lower quality disparity information without

overall quality loss and would most likely not benefit from costly depth estimations

such as 1361. This is crucial for high quality view synthesis as ground truth disparity

is usually unavailable.

Although our techniques performs similar ly to DIBR with ground truth disparity.
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DIBR DIBR Ours Ours'

Figure 5-7: The figure presents a comparison between our tech-

nique and DIBR on three images from the Middlebury stereo datasets

(http: vision.niddleburyedi stereo ). Additionally, the results of both tech-

niques with ground truth disparity information are shown (Ours* and DIBR*). The

coloriaps correspond to the differences between reconstructed images and original

views measured using SSII metric IWang et al . 20041. While our technique (fourth

raw) outperforms DIBR technique (second raw), it produces very similar results to

the techniques that use ground truth disparity information (third and fifth rows).

the scenes used in these tests consist mostly of diffuse surfaces without ambiguous

depth situations like reflections. depth of field or motion blur. In more difficult cases

with complex light effects. depth-of-field and motion blur effects. our method could

outperform the DIBR method even if it was supplied with ground truth disparity

information (Figure 5-8).
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DIBR DIRR*

Initial Estimation High Frequency I nw Frpnctinrv

Figure 5-8: Complex light effects. As highlights or refractions have a different dis-
parity than the diffise component, it is challenging to expand views correctly using
DIBR. even with the ground truth diffuse component depthi map (DIBR*). On the
other hand, our approach could handle this case by estimating disparity inforiation
separately for each wavelet frequency level. In this scene, the disparity information
for diffuse components is captured bv hilghier frequency levels. while lower frequency
levels contain the disparity information for highlights and refractions.
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Chapter 6

Discussion and Future Work

Similarly to a pure Eulerian approach, our disparity refinement step is limited to

small disparity errors. However, the total wavelet disparity is not because it always

includes the component from the initial disparity. This allows our method to out-

perform Lagrangian methods in many situations. For example, the discretization of

initial disparity maps leading to cardboard effects is related to small disparity errors.

These can be easily handled by our correction (Figure 5-3). In ambiguous cases,

such as reflections, motion blur etc., the initial disparity is usually wrong. How-

ever, these phenomena usually correspond to lower luminance frequencies, for which

the range of corrections we can perform is sufficiently large (Figures 5-5 and 5-6).

Our Eulerian-based correction cannot handle large errors in the initial disparity map.

These, however, usually correspond to untextured regions. Although we are not able

to correct high frequencies in these areas, this does not create severe artifacts as the

corresponding amplitudes are usually low.

There are two aspects that distinguish our approach from other multi-resolution

techniques. First, we avoid notion of searching through a range and taking an optimal

value. After the initial disparity is estimated, all refinements are expressed as closed-

form expressions on wavelet phases. Second, we do not propagate disparity across

frequencies. This independent estimation is the strength of our technique. This is

also why our refinement is not a coarse-to-fine method.

Our method performs expansion only in the horizontal direction. Although this
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is sufficient for standard automultiscopic displays, it would be interesting to consider

extending it to the vertical direction. We also believe that our combination of the

Lagrangian and Eulerian approaches opens up new ways of improving methods where

view synthesis is necessary.
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Chapter 7

Conclusions

We have presented a method that opens the door to practical 3D television sys-

tems at home. Our real-time method converts existing stereoscopic content to a

high-resolution, high-quality, multi-view format that is suitable for automultiscopic

displays. Our approach leverages advantages of both Lagrangian and Eulerian tech-

niques by combining them into one method. This allows us to handle larger disparities

than the Eulerian approach can deal with when applied alone, and to resolve difficult

cases such as motion blur, depth of focus, and reflections which are challenging for

Lagrangian approaches. To this end, we propose to use a steerable pyramid decom-

position where disparity information is estimated for each wavelet separately. This

decomposition is later used in our new wavelet-based view synthesis method which

computes necessary views for autostereoscopic displays. Additional steps such as

inter-view antialiasing or nonlinear disparity manipulations can be easily integrated

in order to provide content customization. Our method operates locally, mostly on

1D scanlines, which allows for an efficient implementation both using a GPU and

an FPGA. Our hardware implementation demonstrates that Eulerian techniques and

their combination with Lagrangian approaches are good alternatives to hardware so-

lutions that are based solely on Lagrangian approaches.
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