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Abstract— Accurate simulation of soft mechanisms under

dynamic actuation is critical for the design of soft robots. We ad-

dress this gap with our differentiable simulation tool by learning

the material parameters of our soft robotic fish. On the example

of a soft robotic fish, we demonstrate an experimentally-verified,

fast optimization pipeline for learning the material parameters

from quasi-static data via differentiable simulation and apply

it to the prediction of dynamic performance. Our method

identifies physically plausible Young’s moduli for various soft

silicone elastomers and stiff acetal copolymers used in creation

of our three different robotic fish tail designs. We show that

our method is compatible with varying internal geometry of

the actuators, such as the number of hollow cavities. Our

framework allows high fidelity prediction of dynamic behavior

for composite bi-morph bending structures in real hardware

to millimeter-accuracy and within 3% error normalized to

actuator length. We provide a differentiable and robust estimate

of the thrust force using a neural network thrust predictor;

this estimate allows for accurate modeling of our experimental

setup measuring bollard pull. This work presents a prototypical

hardware and simulation problem solved using our differen-

tiable framework; the framework can be applied to higher

dimensional parameter inference, learning control policies, and

computational design due to its differentiable character.

I. INTRODUCTION

Soft robots are favored over traditional hard robots in
a growing list of scenarios, including bio-inspired design,
conformal gripping, co-bot situations, and more. While the
design and simulation of hard robots are well understood
and extensively shown thanks to decades of development,
the same simulation task for compliant structures and their
interaction with the environment is an ongoing challenge.

Although many simulation schemes exist, none have
demonstrated sufficient sim2real matching through verifiable
experiments for soft robots in a hydrodynamic situation such
as a robotic fish. The high dimensionality of soft mecha-
nisms and the complex physics of fluid-structure interactions
(FSI) make this problem particularly difficult. One critical
challenge in producing high accuracy simulations is the
precise measurement and manual tuning needed to dial-in
the material parameters of soft mechanisms. The problem
has recently become more tractable because of advances in
physics-based simulation, such as differentiability and data-
driven approaches.
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Fig. 1. Left: A model of a pneumatic fish tail (Nemo). Middle: The same
fish tail inflated to 250mbar in simulation. Right: The actual hardware of
the fish tail in an experimental setup for measuring the deformation and
the thrust of the fish in air and underwater. Our framework is capable of
reproducing the buckling effect in simulation, a valuable result.

We present a differentiable simulation framework that
can be used to accurately predict the deformation of a
soft pneumatic actuator and identify its material properties
through gradient-based optimization. Three designs of a
pneumatically-actuated fish tail are used as benchmark (see
Table I) since composite bi-morph structures are difficult to
simulate due to the disparate Young’s moduli and aspect ra-
tios of the deformable body and stiffer spine. The deformable
body of the fish tail is cast out of silicone elastomer and has
a flexible spine made of an acetal plastic sheet in the center
(see Fig. 1). .

Our framework is capable of learning physically-plausible
material parameters, i.e., Young’s modulus and Poisson’s
ratio, using only a quasistatic data set without extensive
material testing. We demonstrate that after optimization we
can produce accurate simulation results compared to dynamic
data collected in our hardware setup to within millimeter
accuracy or within 3% max error normalized to the actuator
length. The fast system identification is achieved using
our finite element method (FEM) [1], [2], which combines
projective dynamics [3] and differentiable simulation [4].

To verify our simulation results, we developed an exper-
imental setup for collecting position, pressure, and force
data using marker tracking, a pneumatic valve array, and
a load cell. The raw data is synchronized and analyzed in
MATLAB.

Furthermore, we are able to reproduce the measured thrust
in our bollard-pull type experiment using a simple neural
network predictor that can be integrated in our differentiable
simulator. Our model is capable of predicting thrust perfor-
mance in actuation signals not seen in the training set and
preserves differentiability of the simulator. Our aim is to
provide straightforward sim2real methods for roboticists that
are within reach: such methods could be used confidently for
design optimization if they are verifiable by real data.

In this paper, we contribute:
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• a simulation framework for a soft pneumatic bending
actuator consisting of disparate materials and geome-
tries;

• a system identification method that uses differentiable
simulation and gradient-based optimization to accu-
rately learn material parameters of two isotropic coro-
tated materials;

• a data-driven hydrodynamics model using a neural net-
work as a simple predictor of the thrust force generated
by the fish; and

• experimental verification of our simulation results using
a hardware setup suitable for data acquisition in both air
and water.

II. RELATED WORK

A. Soft underwater robots

Soft robots are difficult to optimally design and control
when compared to their rigid counterparts due to the infinite
dimensionality of their compliant structures. Due to this
modeling complexity, an experienced designer must hand
craft each design guided by intuition, experiments, and
approximate models. Marchese et al. offer approaches to
designing and fabricating soft fluidic elastomer robots, the
type of robot we are also using in this work [5]. Katzschmann
et al. present the design, fabrication, control, and testing of
a soft robotic fish with interior cavities that is hydraulically
actuated. Their manually designed robot can swim at mul-
tiple depths and record aquatic life in the ocean [6], [7].
Zhu et al. manually optimize the swimming performance of
their robotic fish, Tunabot [8]. The authors measured kine-
matics, speed, and power at increasing flapping frequencies
to quantify swimming performance and find agreement in
performance between real fish and their Tunabot over a wide
range of frequencies. Zheng et al. propose to design soft
robots by pre-checking controllability during the numerical
design phase [9]. FEM is used to model the dynamics of
cable-driven parallel soft robot and a differential geometric
method is applied to analyze the controllability of the points
of interest. Katzschmann et al. [10] manually tweak the
material parameters of their reduced-order FEM [11] with
an experimental soft robotic arm to perform dynamic closed-
loop control. Van et al. present a DC motor driven soft
robotic fish which is optimized for speed and efficiency based
on experimental, numerical and theoretical investigation into
oscillating propulsion [12]. Wolf et al. use a pneumatically-
actuated fish-like stationary model to investigate how pa-
rameters like stiffness, strength, and frequency affect thrust
force generation [13]. Wolf et al. measure thrust, side forces,
and torques generated during propulsion and use a statistical
linear model to examine the effects of parameter combina-
tions on thrust generation; they show that both stiffness and
frequency substantially affect swimming kinematics. We are
not aware of any work that uses a fast differentiable FEM
simulation environment to learn material parameters for soft
robotic fish using a bollard-pull style experimental setup.

B. Differentiable soft-body simulators

Our work is also relevant to the recent developments
of robotic simulators, particularly for soft robots. Geilinger
et al. [14] present a differentiable multi-body dynamics
solver that is able to handle frictional contact for rigid and
deformable objects. Coevoet et al. [15] notably present a
non-differentiable framework for modeling, simulation, and
control of soft-bodied robots using continuum mechanics
for modeling the robotic components and using Lagrange
multipliers for boundary conditions like actuators and con-
tacts. Most related to our work are the recent works on
differentiable soft-body and fluid simulators [16], [1], [17],
[4], [18], [19], [2]. These papers develop numerical methods
for computing gradients in a traditional simulators. Further-
more, they demonstrate the power of gradient information
in robotics applications, e.g., system identification or tra-
jectory optimization. Most of the works present simulation
results only, with ChainQueen [18] and Real2Sim [17] being
two notable exceptions that discuss real-world soft-robot
applications. Notably, [17] optimizes visco-elastic material
parameters of a finite element simulation to approximate the
dynamic deformations of real-world soft objects, such as an
open-loop controlled tendon-driven crawling robot. Bern et
al. [20] have also demonstrated the use of differentiable sim-
ulation to learn from a quasi-static data set for the purpose of
optimizing open-loop control inputs. Dubied et al. [21] is the
most recent example that demonstrates sim2real matching for
a soft robotic fish tail, shows system identification on a pas-
sive structure for just the Young’s modulus, and investigates
the mismatch in damping between reality and simulation.
In this previous work, the fish tail actuation is simulated
using a simplified muscle model and only one design is
shown whereas in this paper, the pressure boundary condi-
tion is simulated exactly as fabricated for each pneumatic
chamber geometry for three different designs. Simulating
the pneumatic chambers improves accuracy and allows for
physically-plausible Young’s moduli and Poisson ratios to
be identified. In this current work, we further demonstrate
that the gradient-based optimization can be carried out to
higher dimensional design spaces that include more than one
material parameter.

C. Hydrodynamic Surrogates

For underwater soft robots, the challenge of simulation
is exacerbated by the hydrodynamic interaction with the
soft body. Several previous works tackle the fluid-structure
interaction problem through different methods, including
heuristic hydrodynamics [22], [2], [23], physically-informed
neural network approaches [24], and data-driven learning
approaches [25].

Compared to these previous methods that simulate un-
derwater soft robots such as [22], our work models pneu-
matic actuation using the exact chamber geometry rather
than artificial muscles facilitating greater accuracy at large
deformations (see Fig. 1), uses a neural network thrust
predictor rather than approximate analytical or heuristic



Fig. 2. Flow diagram of our differentiable simulation and learning pipeline.
To learn the material parameters, we compute the loss as the Euclidean
distance between the measured marker positions xm and the simulated
position data xt and then minimize this loss using gradient-search enabled
by our differentiable FEM simulation. The marker positions are 2D in-plane
measurements primarily due to lateral displacement during flapping. Our
neural network thrust predictor takes as input the positions and pressure at
a previous time step and outputs the thrust force for the next time step.

hydrodynamics, and presents a more sophisticated hardware
pipeline that can be used to validate simulation.

III. SYSTEM OVERVIEW

Our pipeline (Fig. 2) learns the material parameters of a
soft robotic fish (see Fig. 1) using differentiable simulation
and measurements from quasistatic experiments. Thrust force
is simulated using a data-driven neural network predictor.
We demonstrate that sim2real matching is good within 3%
positional error normalized to actuator length for our soft
robotic fish prototypes even under significant bending.

In Section IV-C, forward simulation is accomplished using
implicit Euler time stepping and FEM spatial discretization.
We leverage projective dynamics for a substantial speed
up in computation [1]. We describe our bollard-pull style
experimental setup in Section V. In Section VI-A, the
material properties of the body and spine are specified by
two different corotated materials stitched together at the
boundary. We verify the results (Fig. 5) of our system
identification by comparing simulations to measurements
from a gamut of dynamic experiments at varying amplitudes
and frequencies. Finally, in Section IV-B we describe the
architecture and training of our thrust predictor network.

IV. PHYSICAL MODELING

A. Solid mechanics

The deformation of a soft material can be modeled by the
equations of elasticity. For the constitutive model we choose
an isotropic corotated material [26] since it is straightforward
to implement for projective dynamics and can predict bend-
ing to within sufficient accuracy for engineering purposes.

A corotated material is defined by its energy density
function using the Frobenius Norm and the trace operator,

 = µ kU� Ik2F +
�

2
tr2(U� I), (1)

where U is the stretch tensor, I is the identity, and µ and �
are the Lamé parameters, which have the following relation
to the Young’s modulus E and Poisson’s ratio ⌫ for an
isotropic material,

µ =
E

2(1 + ⌫)
, � =

E⌫

(1 + ⌫)(1� 2⌫)
. (2)

This material energy model is popular for physical simulation
and animation, but it is not the most accurate choice for
closing the sim2real gap for large deformations [26], [27].

To simulate a pneumatically actuated fish tail, we use a
spatially-constant time-varying pressure boundary condition
on the interior surface of each chamber of the tail.

B. Hydrodynamics

The hydrodynamic effects that produce thrust and drag on
a swimmer are important, however, the physics governing the
fluid can be complicated due to turbulent effects and two-
way coupling between the solid and fluid domains. One may
choose to model water using the Navier-Stokes equations,
however, in practice simulating the full FSI problem is under
time constraints computationally unfeasible. For this reason,
many workers in the field of computer graphics and simula-
tion choose to use simplified heuristic hydrodynamic models
such as the one presented by Min et al. [23]. Analytical
models for fish propulsion have also been studied extensively
in the literature [28], [29], [30], but these approximations
require severe simplifying assumptions necessary for ana-
lytical tractability. Using the elongated-body theory (EBT)
described in Section IX-A [28], the average thrust produced
by a fish is approximated by fEBT = mĝ(ẋ, ẏ, y), where m
is the virtual mass and ĝ is a function of the velocity ẋ, ẏ
and deformation y of the fish tail measured in millimeters.
We use EBT for comparison to our learned hydrodynamic
model.

C. Simulation

1) Discretization: We use our finite element method with
tetrahedra to discretize the continuous spatial domain occu-
pied by the soft fish tail. Furthermore, we implement the
implicit Euler time-stepping scheme for time discretization.
Formally, let xi and vi be vectors of size 3N stacking up
the nodal positions and velocities from the tetrahedra at the
i-th time step. We then rewrite the governing equations in
the following discretized form

xi+1 =xi + hvi+1, (3)
vi+1 =vi + hM�1[fela(xi+1) + fact]. (4)

Here, h is the time step, M is the mass matrix, and fela
and fact represent the elastic force and the actuator force
(computed by the pressure from the pneumatic actuator and
the surface area of the chambers), respectively. The time
integration is implicit because we make the elastic force
depend on the nodal position xi+1 at the beginning of the
next time step instead of the current one.



Fig. 3. Three different actuator designs. Nemo and Bruce share the same
geometry but Bruce has a stiffer DS20 material for its body. Nemo and Dory
share the same materials but Dory has a greater number of air chambers.

2) Solver: Solving Equation (3) typically requires expen-
sive numerical computation due to its implicit time-stepping
scheme. However, mature numerical tools exist since this
problem has been extensively studied in computer graphics
and physics simulation. In this work, we choose to use
DiffPD [1], a recent differentiable simulator with projective
dynamics that is suitable for simulating terrestrial and un-
derwater soft robots. We choose differentiable projective dy-
namics over other numerical solvers, for example traditional
Newton’s methods, due to its simultaneous accommodation
of speed, robustness, and differentiability.

V. EXPERIMENTAL SETUP

In Fig. 3, we show renderings of the three types of fishtail
actuators we investigate in this work. We vary material
parameters as well as geometry.

We collect tail deformation, thrust force, and air chamber
pressure data of pneumatically actuated silicone fishtail both
in air and in water. To this end, the fishtail is mounted
in a water tank and the fish head is rigidly connected to
a load cell (TAL2210, 1 kg model) to measure the thrust
force in the heading direction (Fig. 4). The load cell data
is obtained using an amplifier board and a microcontroller.1
Black markers are painted onto the fish’s back and tracked
using Kanade-Lucas-Tomasi (KLT) feature tracking in a
video captured from above using a GoPro Hero 6 cam-
era [31], [32]. We found in practice that three markers are
sufficient for capturing the deformation of the fishtail and
can be used as input to our learning pipeline. From the
video after correcting for parallax and distortion, we obtain
in-plane displacements for each marker. An LED is used to
synchronize the pressure and the force data with the recorded
video. The fish is actuated with a Festo proportional valve
manifold with controlled pressure2, which outputs desired
and actual pressure data for both air chamber sides of the
fishtail.

Two types of experiments are conducted using the same
experimental setup: First, a quasistatic experiment is carried
out, where the fishtail is deformed by actuating one side of
the fish with constant pressure. Second, flapping experiments
are conducted where the fishtail is actuated using a square
pressure wave, which leads to a natural motion of the tail.
Both the quasistatic and the flapping experiment are carried
out with a variety of fish designs using silicone rubber with

1Amplifier: HX711, Microcontroller: Arduino Leonardo
2MBA-FB-VI, 0�2bar range, 1% accuracy

Fig. 4. Thrust experiment setup actuated with a Festo proportional valve
manifold. A 3D-printed fixture (black) connects the load cell (grey) to a fish
adapter (opaque). The fish adapter is mounted within a casted soft robotic
fish tail made of silicone elastomer. The deformation of the tail is captured
using a GoPro positioned above the tail. Markers on the back of the fish
are tracked using Kanade-Lucas-Tomasi (KLT) feature tracking. The thrust
generated by the fish is measured using a load cell.

TABLE I
MATERIAL, YOUNG’S MODULI, AIR CHAMBERS, AND MAXIMUM

APPLIED PRESSURE FOR EACH PROTOTYPE. REPORTED MATERIAL

PARAMETERS ARE NOMINAL VALUES.

Property Nemo Dory Bruce

Body Material DS10 DS10 DS20
Body Young’s Modulus [MPa] 0.1� 0.25 0.1� 0.25 1.1
# of Chambers 9 12 9
Spine Young’s Modulus [GPa] 2.5� 5 2.5� 5 2.5� 5
Max. Pressure [bar] 0.2 0.35 0.5

different Young’s moduli.3 The fish materials, geometries,
and actuation pressures are shown in Table I. No pre-
straining was done on the fishtails prior to experiments and
negligible hysteresis was found when actuating under peri-
odic pressure signals. The maximum observed displacements
in the fishtail were on the order of 20%, normalized to a tail
length of 10 cm.

Since we are not fully constraining the fish to one-
dimensional translation, there exists bending moments that
may result in spurious forces on the load cell. However,
we assume these to be negligible compared to the peak of
the thrust force. Furthermore, due to the small size of the
tank, a standing wave persists in the tank even after initial
actuation. This can lead to a disturbance force on the load
cell. However, since the frequency of this disturbance is
known, it can be filtered out during post-processing. We also
note that the measurement system has its own compliance
and damping, which account for the recoil and negative force
readings.

VI. SYSTEM IDENTIFICATION

A. Learning Material Parameters
In this section, we explain our method for system identi-

fication. The process begins with exporting two STL files
from a CAD file of the soft actuator, one for the body
and one for the spine. To streamline the tetrahedral mesh
generation, we simplify the geometry by patching the small

3Smooth-On Dragon Skin 10/20 slow with shore hardness 10A/20A



mounting holes used during the casting process to stabilize
the fish. Otherwise, the geometry of the body and spine
are imported as designed without modifications. In practice,
we have found that a correct chamber and spine geometry
are essential for adequate system identification of material
parameters that are physically plausible.

We tetrahedralize the surface triangle mesh by modeling it
as a whole piece of surface, a few holes representing the air
chambers, and a set of internal points defining the separation
of spine and body. The tetrahedralization is done according to
the method by Hu et al. [33]. We control the target length of
edges to be 1/50 of the whole body length to get an expressive
and representative tetrahedral mesh.

After the tetrahedralization, we split the spine and body
elements and assign different Young’s moduli to them.
The internal surfaces, which are identified as air chambers,
are modeled as actuators to drive the tail. In physical
experiments, we actuate the tail in the air and record its
deformation through the tracked markers. This information
provides supervision to the material parameter search for
both the body and spine. We measure the error of matching
by the Euclidean distance between measurement data and
simulation results from the sensors.

We conduct our simulation experiments based on a linear
elastic corotated material. The model can be improved by
introducing a more sophisticated elastic energy model, for
example Neo-Hookean material, which was not yet supported
in our simulation framework. Furthermore, we chose not to
include damping explicitly in the material model since we
learn material parameters using static deformation data. For
the dynamic experiments, we observed that the deformations
were sufficiently small for accurate characterization and
that the effect of material damping is small thus having a
negligible effect on the forced response.

B. Learning Hydrodynamics
To learn a simplified model of the hydrodynamic thrust

force predictor fthrust, we use a feedforward neural network
trained on data from the experimental setup (see appendix).
The inputs of the neural network consist of the positions and
velocities of the tracking points at time t, together with the
measured pressure and its time derivative, while the output is
a one-dimensional value for fthrust at time t. The feedforward
neural network consists of three hidden layers with RELU
activation functions and respectively a dimension of 200,
300, and 200 hidden units. The network is trained with the
Adam optimizer using a learning rate of 0.001 and a mean
squared error loss. Note that our hydrodynamic modeling
method does not estimate fluid properties such as density or
viscosity, but rather the thrust force prediction, which is of
more immediate use for designers of swimming robots.

In Table II, we provide a description of the training and
the test set used for the thrust predictor network. Only Nemo
and Bruce are reported in Fig. 8 and Table II for brevity since
Dory thrust data predictions are similar. The table clarifies
how we tested the generalizability of our predictor. We split
the experimental data to show the ability of the network to

TABLE II
SPECIFICATION OF THE TRAINING AND TEST SETS FOR THE THRUST

PREDICTOR NETWORK. IN THE NEMO EXPERIMENT, WE GENERALIZE TO

UNSEEN TRIALS WITH SEEN PARAMETERS. IN THE BRUCE EXPERIMENT

WE GENERALIZE TO UNSEEN HIGHER ACTUATION FREQUENCY.

Name Mode N. trials Pressure Frequency

Nemo Training 32 200,300 mbar 1,2,3,4 Hz
Validation 8 200,300 mbar 1,2,3,4 Hz

Bruce Training 30 500,750 mbar 1,2,3 Hz
Validation 10 500,750 mbar 4 Hz

generalize to unseen trials. For the fishtail named Nemo,
while we keep the parameters the same, we generalize in
the validation set to unseen trials under various actuation
amplitudes and frequencies. In the experiments for Bruce,
we generalize to an unseen higher actuation frequency.

VII. RESULTS

A. Learned Material Parameters
For the Nemo tail actuator described in Table I, we perform

a grid search of the loss landscape centered around the
ground truth datasheet values for the silicone and acetal
materials of the body and spine. We report that if the exact
geometry of the actuator is reproduced with high fidelity
in the simulation, we converge to values within the range
of typical measured values for the material Young’s moduli
(see Fig. 5). Further, we see that there is a unique minimum
value that is within the acceptable range of measured moduli
for both parameters. Note that we assume a priori that the
Poisson ratio for silicone is ⌫ ⇡ 0.5 or nearly incompress-
ible, a standard assumption for silicone, and the acetal sheet
Poisson ratio is ⌫ = 0.37 as reported by the manufacturer.
Typical values for the Young’s modulus of Dragon Skin 10
range from 0.1MPa to 0.25MPa and the value for Dragon
Skin 20 was measured to be in the range of 1.1MPa [34]
and typical values for the Young’s modulus of acetal sheets
range from 2.5GPa to 5GPa.4

In Fig. 6, we demonstrate that our method can be extended
to higher dimensional parameter spaces such as a search over
both Young’s moduli and Poisson’s ratios. Note that although
we allow the Poisson ratio to vary in this identification
experiment, the final value to which the body Poisson’s
ratio converges is still nearly incompressible as expected for
silicone.

B. Gradient-based and Gradient-free Solver Methods
We compare the runtime of the gradient-free method

CMA-ES against the runtime of the gradient-based method
Adam in Table III. The comparison shows that although
CMA-ES [35] is slightly faster in runtime per iteration, the
use of the gradient-based method Adam [36] is significantly
more effective for convergence. These comparative experi-
ments shown in Fig. 5 were carried out on a computer with
an Intel Core i9-9900K @ 3.60GHz with 16 cores processor
and 64.0 GB of memory.

4https://dielectricmfg.com/knowledge-base/acetal/

https://dielectricmfg.com/knowledge-base/acetal/


Fig. 5. Top: Exhaustive search of the Young’s moduli pair for the spine
and body. The moduli pair with the lowest Euclidean loss is located at
the red ⇥. The red dot indicates the start of a gradient search and the
white line shows the progress towards convergence. Middle: Convergence
comparison between a gradient-based (Adam) and gradient-free search
(CMA-ES). Bottom: Comparison of static deformation of the Nemo fish for
increasing pressure in experiment and simulation. Maximum displacement
error increases with pressure, but remains within the measurement error (on
the order of the diameter of markers). The grid in white under the real robot
has 10mm spacing. The reported error is normalized to the fish tail length
of 10 cm.

C. Dynamic Experiments
For dynamic experiments, we compare the results of our

simulation output with the measured data of the furthest
tracked dot on the tail. In Fig. 7, we report our findings
for sim2real performance in both the standard fish (Nemo)
and two other data sets for a tail with different Young’s
moduli for the body (Bruce) and a tail with a greater number
of air chambers (Dory). We demonstrate that if system
identification is done correctly our simulation results can
predict the performance of a novel actuator design to within
millimeter precision or 3% max normalized error using only
a quasistatic data set for training without need for material
testing. The Bruce prototype required higher pressures to get
similar displacements to Nemo since the material is stiffer.

Fig. 6. Learning four material parameters from deformation data take
with the Nemo fish prototype using a gradient-based approach that is run
until convergence. The final values for Young’s moduli and Poisson’s ratios
depicted as an asterisk agree with plausible material parameter values with
lower loss.

TABLE III
COMPARISON OF ADAM, CMA-ES, AND GRID SEARCH. THE FORWARD

SIMULATION TIME IS 318.9 SECONDS EQUIVALENT TO GRID SEARCH.

Method
Total

Iterations

Time Per

Iteration
Total Time

Loss After

4 Iterations

Adam 4 334.4 s 22 m 0.0027

CMA-ES 40 321.0 s 214 m 0.021
Grid search 25 318.9 s 132.9 m 0.023

The prototype Dory required higher pressure as well to
produce similar displacements due to a greater number of
actuation chambers. For videos of the dynamic experiments
and simulation, we ask readers to refer to our supplemental
video.

D. Learned Hydrodynamics
We compare our simple predictor of thrust force with

the measurement data and the theoretical thrust from EBT,
a classic, non-learning-based approximate analytical model
from the literature, in Fig. 8. Although the model is capable
of generalizing to actuation signals at frequencies previously
unobserved in the training for the Nemo prototype, for the
Bruce prototype the discrepancy is large, nearly twice the
measured force, likely because of the more limited training
data. In comparing to the thrust prediction from EBT, we
see that the analytical thrust is strictly positive. The negative
measured force is due to recoil of the measurement system.
The advantage of our approach is the differentiability and
flexibility of the neural network provided enough data is
collected. We note that the network is capable of learning
the measurement dynamics due to the compliance of the
load cell and the damping of the water though these effects
can be considered separately and corrected for if desired
(see Section IX-B). We conjecture that the asymmetry of
the measured thrust may be due to imperfections in the
fabrication process of the fish tails favoring one direction
more strongly.

VIII. CONCLUSION

We present an experimentally-verified simulation frame-
work that can be used to accurately predict the deformations
of a pneumatically actuated fish tail with a flexible spine.
Our pipeline can accurately learn material parameters from
a quasi-static data sets without having to do expensive and



Fig. 7. Simulation and measurement data for the Nemo fish at (a) 200
mbar and 2 Hz, (b) 200 mbar and 4 Hz, (c) the Bruce fish at 500 mbar
and 2 Hz, and (d) the Dory fish at 350 mbar and 2 Hz. The color bands
indicate the variance from N = 5 trials. For both actuation signals, we
are capable of achieving sub-millimeter accuracy between experiment and
simulation. The same method is used to identify the parameters of Bruce
and Dory, exhibiting accuracy still within 3mm. We normalize the Root
Mean Square Error (RMSE) to the fish tail length of 10 cm. As expected,
higher pressures result in larger deformations with greater error. The phase
lag exhibited in Bruce and Dory may be due to actuator dynamics present
during higher actuation pressures.

time-consuming material testing. It also eliminates the need
to do manual tuning of material constants to get accurate
simulation results. The parameters we found are not only
within typical range of measured material parameters for
our materials, but can be used to successfully predict the
behavior of dynamic experiments for different pressure ac-
tuation amplitudes and frequencies to within 3% positional
error normalized to a actuator length of 10 cm. Although we
use an isotropic corotated material, which is linear elastic,
we find that this model is more sufficient to model large
deformations on average giving acceptable displacement
results for our engineering application. In these experiments,
the damping of the material and the hydrodynamic effects
are found to be negligible. This is because the actuation
pressures used dominate the deformation compared to losses
and hydrodynamic pressure.

We show a data-driven approach can be used to do simple
prediction on a useful performance metric such as thrust
force given a suitable hardware setup. However, more work
is needed to produce a more robust thrust predictor if the
morphology of the actuator changes substantially. We claim
that for small design changes such as the choice of silicone
or the number of internal chambers this framework can be
used to quickly assess the relative merits of each design
with a relatively sparse data set of approximately 30 types
of different actuation signals.

Our aim is to further progress towards a systematic method
by which soft roboticists can simulate and optimize their de-
signs and controllers, whether they be soft fish, manipulators,
or other flavors of soft robots. A fast and physically-verified
co-optimization method of design and control is the goal.

Fig. 8. Tail lateral displacement (blue) with thrust measurement and pre-
diction. We compare the measured thrust force fm (black), analytical thrust
force from EBT fEBT (magenta), and the neural network thrust prediction
fthrust (green). We show the thrust prediction for two training sets (a) and
(c) and we report the time-averaged thrust for the two test cases (b) and (d).
We note that EBT tends to over-predict the thrust measurement while our
neural network thrust prediction accurately reproduces the frequency for a
given actuation signal and matches amplitude more robustly than EBT.

IX. APPENDIX

A. Large Amplitude Elongated-Body Theory

The thrust of a fish swimming in an inviscid fluid can be
described by Lighthill’s Elongated-body theory (EBT) [28].
To calculate the thrust predicted by EBT, we make use of
a simplified version of the reaction force expression from
Lighthill [28], which uses significantly different notation,

fEBT ⇡ 1

2
mẋ2, (5)

where we have evaluated the expression for the marker
closest to the tail and we have assumed the unit vectors @x

@a ⇡
0 and @y

@a ⇡ 1 when considering small tail deformations in
dynamic actuation. Note that ẋ is velocity tangential to the
fin chord.

We also use Lighthill’s expression for the virtual mass
m = 1

4⇡⇢s
2, where ⇢ is the density of the fluid and s is the

cross-sectional depth, by estimating the geometry from the
CAD model of our robotic fish.

B. Load Cell Measurement Dynamics

We choose to model the dynamics of the load cell mea-
surement jig (Fig. 4) as a lumped element system shown
in Fig. 9. We assume that the stiffness of the fixture is far
greater than the stiffness of the connection between the load
cell and the fish. Solving for the transfer function describing
the load cell dynamics, we have

fm

fhydro
=

bs+ k

ms2 + bs+ k
, (6)



where s is the complex Laplace variable. From this model,
it is clear how the measured force fm can be negative even
for strictly positive fhydro as discussed in Section VII-D.

It is possible to measure each parameter in Equation (6)
and compensate it by inverting the transfer function, however,
our proposed data-driven neural network force predictor is
agnostic to the dynamics of the measurement system.

k

b

m

fhydrofm

Fig. 9. Load cell dynamics. The force fm is measured with a pre-calibrated
load cell. The force fhydro is the actual hydrodynamic force experienced by
the fish. The stiffness k and the damping coefficient b describe the lumped
mechanical impedance of the measurement system. The lumped mass m is
dominated by the fish. The wall is the connection point to the load cell.
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