
An Integrated Design Pipeline for Tactile Sensing Robotic Manipulators

Lara Zlokapa1, Yiyue Luo1, Jie Xu1, Michael Foshey1, Kui Wu2, Pulkit Agrawal1, and Wojciech Matusik1
http://robohands.csail.mit.edu/

(F) ASSEMBLE INTO FINAL PRODUCT

3D Printed
Components Assemble

(D) MANUFACTURE MANIPULATOR

Low-Res Covering
Mesh for Each Finger

Specify
Sensing Faces

(C) SPECIFY KNITTING AND TACTILE SENSING

Deform
Component Cages

Resulting
Manipulator

export

ex
po
rt

(B) DEFORMATION-BASED SHAPE EDITING(A) APPLY GRAMMAR RULES TO CREATE MANIPULATOR

Start Symbol Create Palm Add Fingers

Knit Two-Layer Sensors with Functional Fibers

(E) MANUFACTURE TACTILE SENSORS

Load

Fig. 1. Our Pipeline: A manipulator is (A) generated using grammar rules and (B) interactively re-shaped via cage-based deformation. Next, the(C) user
specifies touch sensor placement. The sensors and hand components are (E) knitted and (D) 3D printed prior to (F) manual assembly of the manipulator.

Abstract— Traditional robotic manipulator design methods

require extensive, time-consuming, and manual trial and error

to produce a viable design. During this process, engineers

often spend their time redesigning or reshaping components

as they discover better topologies for the robotic manipula-

tor. Tactile sensors, while useful, often complicate the design

due to their bulky form factor. We propose an integrated

design pipeline to streamline the design and manufacturing

of robotic manipulators with knitted, glove-like tactile sensors.

The proposed pipeline allows a designer to assemble a collection

of modular, open-source components by applying predefined

graph grammar rules. The end result is an intuitive design

paradigm that allows the creation of new virtual designs of

manipulators in a matter of minutes. Our framework allows

the designer to fine-tune the manipulator’s shape through cage-

based geometry deformation. Finally, the designer can select

surfaces for adding tactile sensing. Once the manipulator design

is finished, the program will automatically generate 3D printing

and knitting files for manufacturing. We demonstrate the utility

of this pipeline by creating four custom manipulators tested

on real-world tasks: screwing in a wing screw, sorting water

bottles, picking up an egg, and cutting paper with scissors.

I. INTRODUCTION

Currently designing robotic manipulators with tactile sens-
ing is a time-consuming and manual process. One typically
brainstorms designs to solve a specific task (or set of tasks),
prototypes a selection of the brainstormed designs, chooses
the most promising prototype(s), and repetitively iterates pro-
totyping until a successful design is achieved. The majority
of time is spent on design iterations driven by trial and
error: several attempts may be necessary before a functional

1Authors are with the Computer Science and Artificial Intelligence
Laboratory (CSAIL), Massachusetts Institute of Technology, 32 Vassar St,
Cambridge, MA 02139, USA laraz@mit.edu

2Author is with Lightspeed & Quantum Studios, Tencent America, 12777
Jefferson Blvd, Building E, Los Angeles, CA 90066, USA

prototype is produced. These iterations often require both
mechanical modifications (involving designing and testing
new parts from scratch) and altering the topology of existing
parts upon the realization that a part with different shape
or size may be better suited for the task. Topology changes
are time consuming because re-shaped pieces may no longer
fit together physically, or component mates and parametric
constraints in the CAD program may break after dimensions
are modified. When this happens, a human must re-model
components, identify and fix parametric constraints, and
manually re-connect CAD assembly pieces to re-assemble
the manipulator model.

Integrating tactile sensors in a robotic manipulator fur-
ther complicates the already human-labor intensive design
process. Many tactile sensors [1], [2] are bulky and cannot
be simply added on top of existing designs. Instead, ma-
nipulators must be designed around them. This adds further
geometric constraints on component interface sizing to the
already tedious process of modifying part geometries using
traditional CAD programs. From start to finish, depending
on task and design complexity, it may take months or years
to produce a high-quality robotic manipulator.

We propose a pipeline with an interactive user interface
to streamline the design and manufacturing process which
is illustrated in Fig. 1. Our pipeline enables the user to
design task-specific, cable-driven robotic manipulators with
pressure sensing in a matter of minutes. Using our open-
source collection of modular sub-component 3D models
and the proposed grammar rules for assembly, users can
quickly create many different robotic manipulator CAD mod-
els. Because the connections between sub-components are
encoded in the grammar rules, a complete 3D model of the
manipulator updates in real-time as the user applies grammar

ar
X

iv
:2

20
4.

07
14

9v
1

 [c
s.R

O
]

14
 A

pr
 2

02
2

http://robohands.csail.mit.edu/

rules. No manual assembly of components in a CAD program
is required. Then, using an intuitive, cage-based deformation
method, the user may topologically deform (i.e., lengthen,
widen, and otherwise distort) the manipulator models ac-
cording to the desired finger and hand shape and size. If
needed, at this stage, users can identify small regions for
placing tactile sensors on the manipulator’s surface. The
sensors are built into a knitted cover that conforms around
the manipulator like a glove.

Our design pipeline guarantees that each manipulator de-
sign can be manufactured. Once the manipulator is virtually
completed, our program automatically generates manufactur-
ing files for 3D printing manipulator components and files for
automatically manufacturing the tactile glove via an indus-
trial knitting machine. By removing many manual and time-
consuming steps in the traditional approach (e.g., modeling
CAD components, laboriously assembling components in
CAD, adapting CAD models during geometry changes, and
tediously integrating touch sensors), our proposed pipeline
enables designers to focus on improving form rather than
fixing functionality.

We evaluated the efficacy of our design pipeline on four
tasks chosen to demonstrate the breadth of possible designs
and the ability to integrate tactile sensors. We designed and
manufactured four separate manipulators to (1) pick up an
egg, (2) screw on a wing screw, (3) sort water bottles, and
(4) cut paper with scissors.

II. RELATED WORK

Manipulator Design. Existing robotic hands such as the
Shadow Hand, DLR Hand [3], UW Hand [4], RBO Hand
2 [5], and others [6], [7] have been designed using traditional
methods for a specific set of tasks. Changing the end task
would require complete redesign which is likely to consume
months if not years. For instance, large joints may not be
manufacturable at a small scale, or task-specialized manip-
ulator fingers may not be cross-applicable for other tasks,
requiring new brainstorming, testing, and specialized design.

Modular robot design is an effective way to generate
various robot structures from a small library of base com-
ponents. It has been applied to generate whole robots ([8],
[9], [10]) and modular hands, including ModGrasp [11],
OpenMRH [12], and NSU’s sensorized, pneumatic robotic
hand [13]. These hands, though modular, generally rely on
a single standard finger model that tessellates to extend or
shorten the finger. Most similar to ours is the Yale Open-
Hand that offers a library of components for assembly [14],
[15]. However, previous works have a limited component
selection, resulting in a limited set of possible topologies.
Additionally, they only explore the discrete topology space
of robot designs. In contrast, our system considers both
the discrete topology of the manipulator and the continuous
geometry of each component thus providing a richer design
space. Finally, none of these modular hands employ grammar
or allow for custom deformation.

Grammar-based design paradigm has previously been em-
ployted to generate simulated multi-pedal robots [16], math-

ematically model the self-assembly of robotic systems [17],
create IKEA cabinets and tables [18], and generate passive
dynamic brachiating robots [19]. However, grammar driven
design not been employed for creating manipulators nor
has it been tested in the real-world. To the best of our
knowledge, our work consists of the first demonstration of an
integrated computational framework for the design of robotic
manipulators and sensor placement.
Tactile Sensing. Many commonly available tactile sensors
have form-factor and compliance restrictions that impact the
geometry and structure of manipulator design. The Robonaut
2 Hand has rigid sensors built into the palmar side of the
hand’s phalanges [20], [21]. The iCub Hand is conformally
covered with flexible PCB acting like a capacitive pressure
sensor at the finger tips [22]. The RBO 2 Hand is wrapped in
liquid metal strain sensors to calculate the deformation and
extrapolate contact with the grasped objects [23]. Finally,
some hands may be fitted with BioTac sensors [24], ready-
made sensorized fingertips that are fitted on the robotic hand
in place of the original hand’s finger tips. These sensors are
available in a single size and their form factor cannot be
altered if a different manipulator topology is required. Other
common tactile sensors are the Tekscan Grip system [25],
Gelsight and other vision-based silicone sensors [1], [26],
[27], [28], and the biomimetic multimodal sensor [29],
[30]. However, none of these can both be designed and
manufactured in a computer-automated manner and confor-
mally cover the robot hand of complex geometry. Electronic
skins [31], [32], while more flexible and adaptable, have not
been scaled up to larger sizes due to the delicate manual
manufacturing processes.

In this work, we incorporate computational design and
digital fabrication of knitted pressure sensing matrices to
conformally cover our manipulators in a scalable, cost-
efficient manner. We hope this will enable broader explo-
ration of tactile sensing for object manipulation.

III. DESIGN WORKFLOW

Our design workflow is summarized in Fig. 1. We designed
a library of components (Fig. 2) that can be combined
using the proposed context-sensitive grammar (Sec. III-A) to
create a diverse family of manipulators. From this discrete
design space, a manipulator topology is chosen. Next, the
component shapes can be refined (Sec. III-B) to increase
manipulator’s suitability for the desired task. The design
requirements of grammar drive composition, ease of shape
deformation, and the guarantee on manufacturing impose
constraints on component designs that are discussed in
Sec. III-C. Finally, Sec. III-D details how the user can specify
the location of touch sensors.

A. Context-Sensitive Grammar
We represent a manipulator assembly design as a graph

where each node corresponds to a physical sub-component
and each edge encodes a connection between two sub-
components (e.g., relative rotation, translation, etc.). This
choice of graph representation guarantees that each assembly

Fig. 2. 3D models of the grammar’s components with associated

symbols. Capital letters indicate that the component is a non-terminal
symbol, while lowercase letters indicate a terminal symbol.

4. B j F(2)

1. P(k+) P(k – 1) e

C C k

1. 3. 5. 7.

2. 6.

PALM GRAMMAR

W w C W w k C C C C c

W w n C C n4.

FINGER GRAMMAR

2. P(k) p

3. P(k+) P(k – 1) B

5. B S

6. B t

7. B j p B

8. B j T

9. B F(2)

10. F(k+) F(k – 1) B

11. F(k) f

12. T a t

13. T a S

14. S s S

15. S s

Fig. 3. Grammar expansion rules for constructing fingers and palms. The
palm grammar is defined on a grid layout and the finger grammar is a
parametric grammar where the palm node “P” and fork node “F” contain
an integer parameter k to denote the number of rule expansions can be made
on the node. k+ means that rule can be applied only when k is positive.

has a unique graph, and each graph corresponds to a unique
assembly. The task of generating diverse manipulator designs
therefore reduces to generating diverse graphs.

Our manipulator grammar consists of two sub-grammars,
a palm grammar and a finger grammar, with rules defined in
Fig. 3. The palm grammar generates palms of different sizes,
shapes, and numbers of finger slots. Once the palm grammar
produces a palm, the user proceeds with the finger grammar
to grow fingers from the palm. Each grammar consists of:

1) Terminal symbols (noted as lowercase letters). These
represent the nodes and edges of a graph.

2) Non-terminal symbols (noted as uppercase letters).
These represent sub-assemblies or sections of a graph.

3) A start symbol. A non-terminal symbol that initializes
the design.

4) Expansion rules. These convert non-terminal symbols
into other non-terminal and terminal symbols. They
allow the creation of many different graphs based the
order and selection of rules applied.

The terminal and non-terminal components used to create the
manipulators are shown in Fig. 2 with their associated letter
symbols. Note that we only show the components required
to make the manipulators in this paper; the “library” of
components can be augmented as desired.
Palm Grammar: To design diverse palms, we compose com-
ponents shown on the left side of Fig. 2. These components
can be connected in a planar grid using the palm grammar
rules to generate palms of varying shapes (see Fig. 4). It
should be noted that each palm grammar rule can be applied
in three configurations rotated by 90l(l 2 1, 2, 3) degrees
to expand the palm in different directions. For example, a

W

R1, R5,R4 w
C
C
k

w
c
CC

n

k

w
c
cc

n
c
n

k
R7, R5,R6

R5, R7,R6, R7

Fig. 4. The palm grammar rules are applied to grow the start symbol (W),
add connector components (C), and attach knuckles (k and n) to create
the grid-based water bottle palm. Green components are non-terminal, and
yellow components are terminal. Rule numbers (R#) correspond to Fig. 3.

Fig. 5. A diverse sample of manipulator designs generated by combining
components using the proposed grammar rules. The designs shown in the
figure are from the stage before deformation.

knuckle node (k) can be connected to either left, right, top
and bottom to a connector node (C). Once the palm has been
built, it serves as a start symbol for the finger grammar to
attach fingers if desired.
Finger Grammar: Similar to the structure of human fingers,
the finger grammar combines finger components depicted in
Fig. 2 linearly: components are added distally to the fingers
to “grow” them in length until termination with a fingertip.

Fig. 5 shows a few grammar-generated manipulator de-
signs. With only thirteen components, our grammar can
produce myriad manipulator configurations with different
palm or finger shapes. On the order of 108 unique fingers
can be generated from fifteen finger expansion rules and
six terminal finger components, assuming the fingers are
constrained to lengths of at most three segments. Restricting
the palm to a three by three grid (only for calculation
purposes) with up to six fingers, at least 1049 unique hands
exist within our constraints. Such a broad design space can
be drastically increased with additional grammar pieces. To
efficient exploration of the vast design space, we developed
an interactive design interface (Fig. 1(A)).

B. Deformation-Based Geometry Shape Design

Once the hand’s topology is established, our pipeline
proceeds to the shape refinement phase, where the user
may change the geometry of indivdual components. While
the grammar generates discrete manipulator topologies, the
specific dimensions of the manipulators may be sub-optimal
for the desired task. For instance, it may be beneficial for the
phalanges to be longer or for the fingers to taper. Our geomet-
ric deformation method supplements the discrete grammar-
based designs by enabling users to quickly and intuitively
vary the manipulator’s shape in a continuous manner to
further optimize their design. To allow users to easily make

design deformations that span multiple shape dimensions, its
logical to use a low-dimensional design parameterization.

In traditional CAD modeling, users would manually
parametrize each feature’s dimensions, a mistake prone
process. Inspired by Xu et al. [33], we apply cage-based
deformation to parameterize the manipulator. This technique
encloses each high-resolution subcomponent mesh into a
cage-like coarse and cuboid shape mesh. The shape of the
enclosed subcomponent can be altered by simply moving the
cage vertices to scale, shear, and taper while guaranteeing
that connections with other surrounding subcomponents are
preserved, thereby ensuring manufacturability. We adapt Xu
et al.’s method to build an intuitive user interface (UI)
for interactively modifying the shape of the manipulator as
shown in Fig. 1(B). The UI allows users to manipulate the
cage mesh vertices of each subcomponent, deforming the
manipulator’s underlying high-resolution mesh.

C. Grammar Component Design

Each grammar component is associated with three meshes.
First, there is a high-resolution mesh used for 3D printing and
manipulator renderings. Second, a coarse, cuboid cage mesh
encloses each component and is used to specify deformation.
Third, to generate the knitted sensors, there is another low-
resolution, cuboid mesh that approximates the associated
high-resolution mesh shape. Both the high resolution and
knitting meshes are deformed by changes to the cage mesh.
Appendix II contains more details on these meshes.

To preserve the mechanical relationships between parts
during deformation, components correspond to mechanical
systems (e.g., static phalanges or dynamic joints) rather than
to physical parts (e.g., phalanges with joints) as shown in Fig.
6. In the figure, two phalanges that are attached by a joint are
separated into three grammar components (Fig. 6, middle):
two phalanx shafts and one pin joint. The joint consists of
three physical pieces: the distal end of one phalanx, a pin,
and the proximal end of another phalanx. The joint compo-
nent can only be scaled uniformly or axially during cage-
based deformation to ensure it functions as a joint. Shearing
or scaling in any other axis will result in elliptical pins,
which cannot pivot and therefore do not work, breaking the
mechanical relationship between the components in the joint.
In contrast, the shaft (phalanx) of a finger may be stretched
and sheared in almost any manner without impeding its
function. Since deformation cages enclose and control each
component, dividing functional aspects into separate compo-
nents with different deformation considerations allows users
to maximally deform the assembly without compromising
functionality. This choice of part division, combined with
careful grammar rule selection, ensures that any design can
be manufactured.

D. Tactile Sensing Cover Design

Given the embedded cuboid mesh from the deformation
stage, we offer a design interface based on the stitch meshes
framework [34], [35] for users to place sensors and generate

Fig. 6. Grammar components correspond to mechanical systems rather
than physical parts. They can be combined into their proper physical parts
that are suitable for 3D printing after deformation.

corresponding knitting files (Fig. 1(C)). To ensure the manip-
ulator can wear the knitted cover, users specify the sides of
the finger that the sensor wraps around. From this, our system
generates a planar knitting pattern with a quad dominant
stitch mesh based on the pattern’s edge length. Each stitch
face in this quad-dominant stitch mesh [34] represents a real
stitch in the knitted cover: a quad represents a knit and a
pentagon represent an increase or decrease stitch to make
the knitted structure conform to the component mesh. Users
select a stitch face to place a sensor. Finally, our system
automatically generates machine knitting files: it traces a
knitting path and specifies stitches based on if the face is
a knit, increase/decrease, or a sensor.

Our knitted sensors were manufactured based on [36].
Each knitted cover requires two layers, one with horizon-
tally and the other with vertically integrated piezoresistive
fibers. By overlapping the two layers, we form a sensing
matrix: sensing points are located at the intersections of
the orthogonally overlapped fibers where the piezoresistive
nanocomposite is sandwiched by two conductive electrodes.
The tactile sensors convert pressure stimuli into electric
signals, which a customized read-out circuit acquires.

IV. FABRICATION

The grammar subcomponents were designed in Solid-
Works then imported into the proposed program. As shown
in the accompanying video, in the program, we manually ap-
plied grammar rules to create manipulator graphs, deformed
the manipulators to the desired shape, and specified all tactile
sensing points. The program generated STL and DAT files
for 3D printing the hand and knitting the sensors. After
manufacturing, the printed pieces were assembled, cables
strung, and sensors stitched closed over the manipulators.
Each manipulator was mounted on a motor box of Dynamixel
motors, which was then mounted on a UR5 arm.

A. Hand Structure

The program-generated STL files were 3D printed on a
Markforged printer using Onyx, a micro-carbon fiber filled
nylon, and assembled after printing. Bushings were added
in the palm using holes in the Connector subcomponents
to guide the cables. Spectra cables were threaded from each
motor, through the manipulator, to the finger joints, and back
to the motors that they originated from,, creating a fully-
actuated, closed-loop cable drive. After threading and tying
all the cables, the system was tensioned by sliding each
motor down a short track on its mount until the cables on
the motor became sufficiently tight (approx. 20-30 N). The
motor was then tightened to prevent it from sliding.

�

�

� �� �� � � �� � �

�

�

�

�

�

�

�

�

� �� ��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

	

� �� ��

�

�

�

�

�	

�

Fig. 7. Graph, 3D model, and image of each manipulator. Top row:
Grammar rules were applied to create graphs. Middle row: The graphs
were modeled and topologically deformed via cage deformation to produce
manipulators; user-specified sensor locations are shown shaded in red.
Bottom row: Images of the fabricated and tested manipulators.

B. Knitted Sensor

Given the generated knitting instructions, we used a digital
knitting machine (SWG091N2, Shima Seiki) to knit the
tactile sensing cover by integrating coaxial piezoresistive
fibers into the textile. A customized read-out circuit interprets
the electrical signals caused by pressure to the sensor.

V. APPLICATION AND RESULTS

A separate manipulator was manufactured for each of the
four tasks (detailed below), mounted on a UR5 arm, and
controlled with a simple ruled-based policy (Appendix III) to
test the success of the design pipeline. To ensure the control
policy works despite the sensor noise, we processed touch
readings as follows: (i) At the start of each task, the sensor
readings were normalized to be zero mean by computing
the average sensor reading from the first fifteen time steps
when the manipulator was not in contact with any object.
(ii) Sometimes, due to shifts in the fabric, readings may
measure negative pressure; we clipped the readings at 0. (iii)
The maximum sensor value detected on the surface of each
finger at any given time was used to guide controls: these
readings correspond to the firmest points of contact with the
sensors. Finally, due to shifts between the two knitted sensor
layers during handling and storage, the contact between
layers changed between testing sessions. Therefore, all pres-
sure threshold values used during manipulator control were
experimentally determined and tuned before each recording
session. Fig. 7 shows the graph, 3D model, and manufactured
manipulator for each task. The associated video contains task
demonstrations, and Appendix IV depicts sensor readings.

A. Picking up an Egg

Eggs require delicate handling. Picking an egg tests the
sensitivity of the sensors and the pipeline’s ability to generate
a manipulator that can grasp an object securely and carefully.

1) Task description: A sensorized four-finger hand picks
up an egg from a table, shakes it to demonstrate the secure
grasp, and places it back on the table.

����� ���

��� ������	�
��
��
�� ��
���
� ��� ��
���
�������

�	��	
����
�
 �
�
��
����
�
 �
�	 �

 ����� �

Fig. 8. A typical egg picking action sequence of the manipulator alongside
the maximum readings from the tactile sensors on each finger. We register
the grasp as successful if three of the four readings exceed the threshold.

2) Design: This design was selected based on engineering
intuition as the most secure method of holding an egg. The
manipulator fingers are mounted on a forked finger with
angled joints to conform around the egg when they bend.
The two lower fingers take advantage of our continuous
deformation: they are are significantly wider at the tip to
better cradle the wider base of the egg. The deformed width
of the manipulators was determined by measuring the egg,
and the design required only one attempt. Six sensors are
located on the inner surface of each of the four fingers that
contacts the egg.

3) Control: From a set location, the handed closes its
fingers around the egg until the sensors on most of the fingers
reach an experimentally-determined pressure threshold. It
follows a hard-coded sequence to shake and release the egg.

4) Performance: The manipulator picks up the egg and
grasps it securely so that the egg does not move when
the robotic arm shakes it. It releases the egg without any
breakage. We note that grasp is reliable enough that we never
broke or dropped any eggs during testing. A sample grasping
sequence with a tactile sensing signal is shown in Fig. 8.

B. Screwing on a Wing Screw
1) Task description: In our demo, a single, sensorized,

rigid finger mounted on a UR5 arm screws a wing screw
into a hole until tight. Requiring no moving parts (other than
the UR5 wrist), this is one of the simplest designs that the
design space can produce.

2) Design: Consisting only of a single, rigid finger, the
manipulator is designed to minimize the number of moving
parts (i.e., only rotation of the UR5 wrist) while ensuring
that it is possible to screw in the wing screw. The base of
the finger is lengthened and offset (sheared, using our cage
deformation) to prevent the finger from colliding with the
nut while the fingertip contacts the wing. The width of the
finger accommodates several wing screw sizes. Sensors are
located on the contact surface between the wings of the wing
screw and the finger.

This design required only two iterations. The first iteration
was a straight finger, which required more complicated
control of the UR5 arm. The second iteration (seen in Fig.

2) offset the fingertip from the axis of the wing screw so that
the only required motion is rotation of the UR5 arm wrist.

3) Control: From a set starting point, the sensorized finger
maintains contact with the wing screw so that when the UR5
wrist rotates, the wing screw is tightened. Because the wrist
of the UR5 arm cannot rotate more than one full rotation, the
robot is programmed to (1) perform half a clockwise rotation
to twist the bolt, (2) lift the manipulator up, (3) rotates back
180� to reset the wrist angle, then (4) lower the manipulator
to repeat the screwing in process until the sensor reads that
a force greater than a pre-determined threshold is required
to rotate the wing screw. This indicates that the wing screw
is screwed in.

4) Performance: Upon tuning of the pressure threshold,
the manipulator successfully performs the task.

C. Sorting Bottles
1) Task description: A manipulator “weighs” a water

bottle to detect if it is empty or full. If full, it asks that
the cap be unscrewed; then it pours water from the bottle.
Empty bottles are discarded in a bin.

2) Design: Cage deformation allows the manipulator’s
fingers to be curved to better grasp round bottles by length-
ening and shearing each of the solid (s) components. Before
creation, the design concept was tested with three pencils
(representing the three fingers) to determine if the bottle
could be tilted using only three degrees of freedom. Once
verified, the design was created using the proposed frame-
work in a single attempt.

3) Control: The three-finger manipulator “weighs” a wa-
ter bottle by balancing it on two fingers and comparing the
pressure detected to a pre-determined threshold. To pour
water from the bottle, the two bottom fingers flex and extend,
tilting the bottle while the top finger abducts to balance the
bottle. To release, the UR5 arm moves the manipulator over
the discard bin, and the fingers extend by a pre-set amount.

4) Performance: The manipulator was moderately suc-
cessful at detecting if the water bottles were full or empty,
pouring water from the full ones once the cap was unscrewed.
It successfully deposited empty bottles in the discard bin.

D. Cutting Paper with Scissors
This scissor manipulator demonstrates grip adaptability (it

dons most shapes of office scissors) and dexterity in handling
the scissors. Sensor feedback determines when each cut has
been completed.

1) Task description: A three-finger manipulator first dons
scissors then cuts with them. If a hard material is placed
between the scissor blades instead of a sheet of paper, the
tactile sensors detect that excessive force is required when
attempting to cut the material, and it will stop cutting.

2) Design: Since scissors are created for human hands, a
design with a thumb and two opposing fingers was selected.
To accommodate finger holes of varying shapes and sizes in
office scissors, the “pointer” and “middle” fingers abduct to
“expand” to fill the finger hole, stabilizing the scissors. The
fingers were tapered using cage deformation to prevent the

scissors from slipping towards the base of the palm. Flexed
distal joints ensure that the scissors do not slip off the fingers.

This design required the most iterations to cut with any
brand of office scissors. Three configurations were tested,
including two types of non-articulated fingers for the larger
scissor handle hole. The configuration seen in this paper
required two iterations, where the fingertip was narrowed
to accommodate narrower scissor handle holes.

3) Control: To don the scissors, the robot fully extends
the fingers. The scissors are placed on the robot hand, then
the robot abducts the two fingers in the larger scissor handle
hole and flexes all distal joints for a secure grasp. To cut,
the robot opens the scissors by spreading its thumb, moves
the hand forward a prescribed amount, and flexes the thumb
to close the scissors until the pressure threshold is reached.

4) Performance: The manipulator is able to don a variety
of office scissors and cut paper with them, stopping cutting
when the paper has been cut. It detects when a hard surface
is put between the scissor blades and does not cut it.
The accompanying video demonstrates the scissors cutting
through paper and rejecting cutting hard acrylic sheets.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented a design pipeline for creating a
variety of robotic manipulators and demonstrated application
of the design method with four manipulators for four tasks.
A user interface enabled the user to design the manipulator’s
morphology using a context-sensitive grammar, topologically
deform it, and specify tactile sensing points. The program
then automatically generates files for manufacturing, and
the user assembles the manipulator with the knitted sensors.
This self-contained method simplifies the manipulator design
process by providing a grammar that allows the user to
flexibly arrange and re-arrange components in a speedy
manner while ensuring that all component configurations
result in manufacturable designs. Additionally, it shortens the
redesign time by providing a basis of pre-tested components,
giving the user confidence that initial designs will perform.

While the pipeline performed well for both design and
manufacturing, we hope to improve the sensors and motor
box. Though functional and easy to manufacture, the sensors
require substantial manual tuning in every repetition of each
of the four tasks. Improving the accuracy and reliability of
sensors is an important area of future investigation. We also
found that the manipulator cables were subject to breakage at
the motor attachment point at high loads. In principle, this
problem can be resolved by increasing the cable diameter
and improving the attachment method so that the cable does
not pass over any sharp 90� bends at the motor.

Our design pipeline has applications beyond manual de-
sign. The computer-friendly graph and grammar representa-
tion enables interfacing with ML, AI, and other optimization
and simulation software. For instance, it may be integrated
with the already-developed AI-driven geometry and con-
trol optimization [33] to quantitatively optimize topology
and control for user-specified manipulator configurations.
Alternately, it may be integrated with an algorithm that

methodically searches and simulates the design space to
determine the optimal manipulator. The ease with which
this program can be integrated with other computational
processes opens many opportunities for co-optimization on
the control and simulation fronts. In the future, with this
pipeline, it may be possible for a program to automatically
create optimized robotic manipulators with automated man-
ufacturing and computer-generated controls algorithms in a
matter of hours without any human involvement.

ACKNOWLEDGMENT
This work was supported by Toyota Research Institute,

Defense Advanced Research Projects Agency (FA8750-20-
C-0075) and an Amazon Robotics Research Award.

REFERENCES

[1] W. Yuan, S. Dong, and E. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[2] N. Kuppuswamy, A. Alspach, A. Uttamchandani, S. Creasey, T. Ikeda,
and R. Tedrake, “Soft-bubble grippers for robust and perceptive ma-
nipulation,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 9917–9924.

[3] M. Grebenstein, M. Chalon, W. Friedl, S. Haddadin, T. Wimböck,
G. Hirzinger, and R. Siegwart, “The hand of the dlr hand arm system:
Designed for interaction,” The International Journal of Robotics
Research, vol. 31, no. 13, pp. 1531–1555, 2012.

[4] Z. Xu, V. Kumar, and E. Todorov, “The uw hand: A low-cost,
20-dof tendon-driven hand with fast and compliant actuation,” The
International Journal of Robotics Research, 2013.

[5] R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of
Robotics Research, vol. 35, no. 1-3, pp. 161–185, 2016.

[6] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, p. 467, 2015.

[7] C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic
hands,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, pp. 1–32, 2019.

[8] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “Accomplishing high-
level tasks with modular robots,” Autonomous Robots, vol. 42, no. 7,
pp. 1337–1354, 2018.

[9] Z. Bi and W.-J. Zhang, “Concurrent optimal design of modular robotic
configuration,” Journal of Robotic systems, vol. 18, no. 2, pp. 77–87,
2001.

[10] I.-M. Chen and J. W. Burdick, “Determining task optimal modular
robot assembly configurations,” in proceedings of 1995 IEEE Interna-
tional Conference on Robotics and Automation, vol. 1. IEEE, 1995,
pp. 132–137.

[11] F. Sanfilippo, H. Zhang, K. Y. Pettersen, G. Salvietti, and D. Prat-
tichizzo, “Modgrasp: An open-source rapid-prototyping framework for
designing low-cost sensorised modular hands,” in 5th IEEE RAS/EMBS
International Conference on Biomedical Robotics and Biomechatron-
ics, 2014, pp. 951–957.

[12] F. Sanfilippo and K. Y. Pettersen, “Openmrh: A modular robotic hand
generator plugin for openrave,” in 2015 IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2015, pp. 1–6.

[13] J. Low, W. Lee, P. Khin, S. Kukreja, H. Ren, N. Thakor, and C. Yeow,
“A compliant modular robotic hand with fabric force sensor for
multiple versatile grasping modes,” in 2016 6th IEEE International
Conference on Biomedical Robotics and Biomechatronics (BioRob),
2016, pp. 1230–1235.

[14] R. R. Ma, L. U. Odhner, and A. M. Dollar, “A modular, open-source 3d
printed underactuated hand,” in 2013 IEEE International Conference
on Robotics and Automation, 2013, pp. 2737–2743.

[15] R. Ma and A. Dollar, “Yale openhand project: Optimizing open-source
hand designs for ease of fabrication and adoption,” IEEE Robotics
Automation Magazine, vol. 24, no. 1, pp. 32–40, 2017.

[16] A. Zhao, J. Xu, M. Konaković Luković, J. Hughes, A. Speilberg,
D. Rus, and W. Matusik, “Robogrammar: Graph grammar for terrain-
optimized robot design,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1–16, 2020.

[17] E. Klavins, R. Ghrist, and D. Lipsky, “Graph grammars for self
assembling robotic systems,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5.
IEEE, 2004, pp. 5293–5300.

[18] M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi, “Converting 3d fur-
niture models to fabricatable parts and connectors,” ACM Transactions
on Graphics (TOG), vol. 30, no. 4, pp. 1–6, 2011.

[19] F. Stöckli and K. Shea, “Automated Synthesis of Passive Dynamic
Brachiating Robots Using a Simulation-Driven Graph Grammar
Method,” Journal of Mechanical Design, vol. 139, no. 9, 07 2017,
092301. [Online]. Available: https://doi.org/10.1115/1.4037245

[20] L. B. Bridgwater, C. A. Ihrke, M. A. Diftler, M. E. Abdallah, N. A.
Radford, J. M. Rogers, S. Yayathi, R. S. Askew, and D. M. Linn,
“The robonaut 2 hand - designed to do work with tools,” in 2012
IEEE International Conference on Robotics and Automation, 2012,
pp. 3425–3430.

[21] C. A. Ihrke, M. A. Diftler, D. M. Linn, R. Platt, and B. K. Griffith,
“Phalange tactile load cell,” U.S. Patent 7 784 363 B2, 2010.

[22] N. Jamali, M. Maggiali, F. Giovannini, G. Metta, and L. Natale,
“A new design of a fingertip for the icub hand,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 2705–2710.

[23] V. Wall and O. Brock, “Multi-task sensorization of soft actuators using
prior knowledge,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 9416–9421.

[24] J. A. Fishel and G. E. Loeb, “Sensing tactile microvibrations with
the biotac — comparison with human sensitivity,” in 2012 4th IEEE
RAS EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob), 2012, pp. 1122–1127.

[25] “Measure grip forces,” Mar 2018. [Online]. Available: https:
//www.tekscan.com/measure-grip-forces

[26] R. Li, R. Platt, W. Yuan, A. ten Pas, N. Roscup, M. A. Srinivasan,
and E. Adelson, “Localization and manipulation of small parts using
gelsight tactile sensing,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2014, pp. 3988–3993.

[27] A. Yamaguchi and C. G. Atkeson, “Combining finger vision and
optical tactile sensing: Reducing and handling errors while cutting
vegetables,” in 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids), Nov 2016, pp. 1045–1051.

[28] B. Fang, F. Sun, C. Yang, H. Xue, W. Chen, C. Zhang, D. Guo, and
H. Liu, “A dual-modal vision-based tactile sensor for robotic hand
grasping,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 4740–4745.

[29] N. Wettels and G. E. Loeb, “Haptic feature extraction from a
biomimetic tactile sensor: Force, contact location and curvature,” in
2011 IEEE International Conference on Robotics and Biomimetics,
Dec 2011, pp. 2471–2478.

[30] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, “Fingertip skin–inspired
microstructured ferroelectric skins discriminate static/dynamic pres-
sure and temperature stimuli,” Science advances, vol. 1, no. 9, p.
e1500661, 2015.

[31] A. Chortos, J. Liu, and Z. Bao, “Pursuing prosthetic electronic skin.”
Nature materials, vol. 15 9, pp. 937–50, 2016.

[32] C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos,
O. Khatib, and Z. Bao, “A hierarchically patterned, bioinspired e-skin
able to detect the direction of applied pressure for robotics,” Science
Robotics, vol. 3, no. 24, 2018.

[33] J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik, S. Sueda, and
P. Agrawal, “An End-to-End Differentiable Framework for Contact-
Aware Robot Design,” in Proceedings of Robotics: Science and
Systems, Virtual, July 2021.

[34] C. Yuksel, J. M. Kaldor, D. L. James, and S. Marschner, “Stitch
meshes for modeling knitted clothing with yarn-level detail,” ACM
Trans. Graph. (Proceedings of SIGGRAPH 2012), vol. 31, no. 3, pp.
37:1–37:12, 2012.

[35] V. Narayanan, K. Wu, C. Yuksel, and J. McCann, “Visual knitting ma-
chine programming,” ACM Transactions on Graphics (TOG), vol. 38,
no. 4, pp. 1–13, 2019.

[36] Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu, M. Foshey, B. Li, T. Pala-
cios, A. Torralba, and W. Matusik, “Learning human–environment in-
teractions using conformal tactile textiles,” Nature Electronics, vol. 4,
no. 3, pp. 193–201, 2021.

https://doi.org/10.1115/1.4037245
https://www.tekscan.com/measure-grip-forces
https://www.tekscan.com/measure-grip-forces

APPENDIX I
MANIPULATOR GENERATION

In this section, the grammar rules used for each manipula-
tor are referred to by number only where Rp refers to palm
grammar rules and Rf refers to finger grammar rules. The
rule associated with each rule number can be found listed in
Fig. 3. In order of operation, the following grammar rules
were applied for each manipulator:

A. Egg manipulator.
Palm: Rp1, Rp5, Rp4, Rp7, Rp5, Rp4, Rp7, Rp7.
For each finger: Rf3, Rf9, Rf10, Rf8, Rf12, Rf10, Rf8,
Rf12, Rf11.
After developing all fingers: Rf2.

B. Wing screw manipulator.
Palm: Rp2.
Finger: Rf3, Rf5, Rf14, Rf14, Rf15, Rf2.

C. Water bottle manipulator.
Palm: Rp1, Rp6, Rp6, Rp5, Rp7, Rp4, Rp5, Rp5, Rp7, Rp7,
Rp7.
Upper (abduction/adduction) finger: Rf3, Rf5, Rf14, Rf14,
Rf14, Rf15, Rf2.
Lower (flexion/extension) fingers: Rf3, Rf7, Rf5, Rf14,
Rf14, Rf14, Rf15, Rf2.
After developing all fingers: Rf2.

D. Scissor manipulator.
Palm: Rp1, Rp6, Rp5, Rp6, Rp7, Rp6, Rp7.
For each finger: Rf3, Rf7, Rf8, Rf12.
After developing all fingers: Rf2.

APPENDIX II
CAGE DEFORMATION: HIGH AND LOW RESOLUTION

MESHES

Multiple high and low resolution meshes are involved
in the design pipeline. Specifically, there are three meshes
(shown in Fig. 9) associated with each grammar component:

• A cuboid, low-resolution ”cage” mesh fully enclosing
each grammar component. The vertices of this cage
are used to define the basis of the deformation, and
the user moves the cage vertices to deform the robotic
manipulator components. These points are the only
points the user has control over when altering the
geometry of the manipulator: all other meshes deform
according to the user-specified cage mesh deformations.

• A high-resolution mesh of each grammar component.
Once combined to form a manipulator, these meshes
will be 3D printed. This mesh is affected by deforma-
tions the user applies to the cage: when the user widens
one end of the cage, the corresponding end of the high-
resolution grammar component mesh will also widen.

• A coarse, low-resolution mesh used to generate knit-
ting patterns. This is a highly simplified version of the
grammar component and is sized so that the knitted
pattern generated from this mesh fits snugly over the

������� ������	�

��
���	����
��� �	��

�	�����
��� ��
	
��
�
������ ������	�

�����	����
���
��
��	 �	��
��
�
������ ������	�

Fig. 9. Each component has three meshes: a high-resolution mesh of the
component used for 3D printing (left), a cuboid, low-resolution ”cage” mesh
(middle) to specify geometric deformation, and a coarse, low-resolution
mesh (right) to generate knitting patterns. Here, the phalanx component is
used as an example to compare these meshes. The grammar component high
resolution mesh is shown in all three images for scale.

Fig. 10. The component deformation cages are sized so that their vertices
are exactly aligned when the components are joined.

corresponding 3D printed part. These meshes are also
subjected to the deformations the user applies to the
deformation cage.

Special considerations beyond those listed above had to be
taken in determining the dimensions of the low resolution
cages for each component. Let the face of a grammar
component that connects to another grammar component
be called the mating face. Then, for every two grammar
components that share a mating face, the vertices of the
mating faces corresponding to those components must match
for their two cage deformation meshes. This concept is
illustrated in Fig. 10. Because the cage meshes must fully
enclose all components and because cuboid mushes must
always have aligning vertices, the height of the mesh must
correspond to the largest component in the system. Similarly,
the vertices of the mating faces of the tactile meshes of two
components must also match. However, these tactile meshes
are not required to fully enclose the high resolution mesh,
nor are they required to be perfectly cuboid.

Why must this vertex-matching constraint exist? For the
cage deformation mesh, the vertices of two mating faces must
match because, upon mating, the overlapped vertices merge
into one point that controls the two components on either side
of the point. This ensures that the interface between the two
components and any feature that spans those pieces remains
intact. This principle guarantees both a watertight mesh and
manufacturability after deformations. For the knitting mesh,
the vertices of the two mating faces must align to form one
continuous knitting surface. If the two faces did not match
perfectly, there would be a sort of ”step” between the smaller

and bigger faces, causing the knitting program to generate a
cover with a step and corners that does not reflect any feature
of the high-resolution mesh. To maintain smooth continuity,
the two mating faces must perfectly align.

APPENDIX III
CONTROL: FINITE STATE MACHINE

Finite state machine controls based on sensor inputs were
used to perform the manipulator tasks. These controls are not
novel and were only intended to demonstrate that the ma-
nipulators are easily controllable; therefore, the positions of
objects in the tasks were hard coded rather than determined
intelligently via, for example, computer vision. In each of
the state machine diagrams (Figs. 11 - 14), pmax refers to
the maximum reading in a sensor patch on a manipulator
finger.

��� ������� 	�
���
��� ���
	
 	�
��

��
�� �����
�����

������
�
�	��	�� ���

����
��
����� ���������

����� ���

���
� 	�
���

 ���! ����� " #$

 ���! ����� % #$
&��� '(������ ��)� ����
�
�	��	! ��� �� ���� ��

Fig. 11. Finite state machine diagram for egg picker control sequence.

����� ���
�� �	
�
��

����� �
�
��	�� ���

��� �
�
��	�� �
���

�	
�
�� 	�
�	���� �	�� ����

�	�� ����

����� ��	��

��������� �����
����� ����

��� ����� ��
����
�	�� �	
�
��

 ��!
" �#

��! $ �#

%��	�� $ &���

�
� ��	�� ��	�	�
 	� �����

%��	�� $ &���

Fig. 12. Finite state machine diagram for wing screw tightening control
sequence. In the diagram, ✓wrist refers to the angle of the most distal joint
on the UR5 arm.

����� ����	�

���
 ������

�	��� ������
�����
 ����	�

�	��� ������
�����
 ����	�

����
� ��

 ���
�	� ��

���
��

��� ��� ��� ��
�� ������
�
 ��� !����
���� ����	�

"�����

����	� �� ����
����
��! �����

��� #$ ��
 ����	� �� ��		

%���	� �� ������

%���	� �� ������

��� �� ������

Fig. 13. Finite state machine diagram for water bottle sorting control
sequence.

������ ��	
��
�
 	����

�����
� �����

����

�����
��

� �����

��
� �����
���
�
�
 ���
�
�����

�
���
 �����
�� �
 ��� ����

�����
��

��
� �����
���
��
� ������	�
�������� ����

��� ! �"

��� # �"
�����
��
����
�

�����
��
�
���
� �
��$ �
 ���

Fig. 14. Finite state machine diagram for scissor cutting control sequence.

APPENDIX IV
MANIPULATOR PERFORMANCE

This section contains image sequences with sensor data for
each manipulator and task (Figs. 15 - 18). For each task, the
threshold required to perform the task was experimentally
determined. For instance, for grasping tasks, the threshold
was chosen to correspond to the strength of grasp such that
the object does not slip out of the hand. Please note that
the sensor data plots are a depiction of a single run and
are intended as only an approximate illustration of sensor
responses while executing tasks.

����� ���

��� ������	�
��
��
�� ��
���
� ��� ��
���
�������

�	��	
����
�
 �
�
��
����
�
 �
�	 �

 ����� �

Fig. 15. A typical egg picking action sequence with the maximum readings
from the tactile sensors on each finger. The grasp registers as successful if
three out of the four finger readings exceed our set threshold.

���� ��� ����	�
����
��
�� ��
	��
� ��� ������
�������

����� �������	
��� 	��
�� ������	��

Fig. 16. A typical wing screw tightening action sequence of the manipulator
with the maximum readings from the tactile sensors on the finger. The wing
screw is registered as tightened if it exceeds our set threshold.

����� ������ 	�
��
����� ��
��� �����
�� �
� �����
 ���
�
��
���� ������

�	
�� ������

��
�� ������ ����� ����

�� ���� ����� �
����� ������

Fig. 17. A typical bottle task action sequence of the manipulator with the
maximum readings from the tactile sensors on each finger. The water bottle
registers as full if the pressure on either lower finger exceeds the threshold.

������� ����	
����� �
���� �
�	���
 ��� ������ �
�

��

����� ������	�
��� ������	�
�� ����	 ������ �������

Fig. 18. A typical cutting action sequence of the manipulator with the
maximum readings from the tactile sensors on the manipulator’s thumb.
The cut registers as ”completed” if the pressure exceeds the threshold even
if the scissors are not closed; this protects the motors from overload.

