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Abstract— Unmanned aerial vehicles (UAVs) have broad ap-

plications including disaster response, transportation, photogra-

phy, and mapping. A significant bottleneck in the development

of UAVs is the limited availability of automatic tools for task-

specific co-design of a UAV’s shape and controller. The devel-

opment of such tools is particularly challenging as UAVs can

take many forms, including fixed-wing planes, radial copters,

and hybrid topologies, with each class of topology showing

different advantages. In this work, we present a computational

design pipeline for UAVs based on a graph grammar that can

search across a wide range of topologies. Graphs generated by

the grammar encode different topologies and component selec-

tions, while continuous parameters encode the dimensions and

properties of each component. We further augment the shape

representation with deformation cages, which allow expressing

a variety of wing shapes. Each UAV design is associated with an

LQR controller with tunable continuous parameters. To search

over this complex discrete and continuous design space, we

develop a hybrid algorithm that combines discrete graph search

strategies and gradient-based continuous optimization methods

using a differentiable UAV simulator. We evaluate our pipeline

on a set of simulated flight tasks requiring dynamic motions,

showing that it discovers novel UAV designs that outperform

canonical UAVs typically made by engineers.

I. INTRODUCTION

Improvements in hardware capabilities, perception, and
control have led to a rapid uptake of aerial robots across
many application domains [1], including remote sensing [2],
search and rescue [3], delivery of goods [4] and precision
farming [5]. In this work, we focus on designing unmanned
aerial vehicles (UAVs), which show significant variation in
topology for different applications due to their operational
requirements, such as load carrying capabilities, maneuver-
ability, and operational range. For example, quadcopters are
preferable [6] for applications requiring hovering, fixed-wing
gliders offer high efficiency [7] for long-distance tasks, and
hybrid systems, combining both rotor and fixed wings, offer
a compromise [8]. The design space for UAVs is therefore
expansive, highly varied, and application-specific. It is also
particularly challenging to parameterize as it must capture
both discrete parameters (which describe the topology) and
continuous parameters (which describe, for example, the size
of the frame or the coefficients of a controller). Currently,
engineers typically perform the design of a UAV manually,
utilizing domain-specific knowledge, design instinct, and
experience [9].
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There have been several computational design tools for
automating the UAV design process [10]–[12]. While these
tools make significant advances, they explore only a limited
shape space describing a fixed category of UAVs with the
same topology, e.g., multirotors with continuously varying
sizes [10]. A significant bottleneck in existing methods is
the lack of a proper UAV shape representation that allows
for both continuous variations and topological changes. In-
spired by previous work on graph grammars [13]–[17] and
shape deformation [18]–[20], we present a novel, hybrid
UAV shape representation combining a new graph grammar
and cage-based deformation. Our proposed graph grammar
consists of a set of carefully chosen rules that encode various
UAV topologies, including quadrotors, fixed-wing planes,
and hybrid UAVs. Moreover, the cage-based deformation
allows for continuous variations of individual UAV com-
ponents, e.g., changing the thickness of a frame shell or
the wingspan of a UAV. Similar to previous work [10], we
further equip a UAV shape with an LQR controller whose
coefficients are trainable continuous parameters. The shape
design space and the LQR controller design space define our
co-design space of UAVs’ shapes and controllers with both
discrete and continuous parameters.

Unlike existing papers which only optimize continuous
parameters in UAV designs [10], [11], our work presents a
hybrid design space. To find an optimized UAV design for a
given task, we need a novel and effective search algorithm
to explore both the discrete topologies and the continuous
parameters. We present a hybrid algorithm that combines
the benefits of discrete search and gradient-based continuous
optimization. Specifically, we run gradient-based continuous
optimization algorithms for a fixed UAV topology to tune the
continuous shape and control parameters, with the gradient
information from a differentiable UAV simulator we devel-
oped in this work. With the continuous parameters optimized,
we then run discrete search strategies to explore various UAV
topologies. We demonstrate the efficacy of our algorithm
on a few flight tasks, and our experimental results show
that it can automatically re-discover canonical UAV designs
typically handcrafted by engineers. In addition, our algorithm
reveals novel UAV designs with performances comparable
to or better than these canonical designs, highlighting the
advantage of our computational UAV co-design pipeline.

Our work makes the following contributions in developing
and implementing this computational UAV design pipeline:
First, we present a novel UAV co-design space enabling both
discrete and continuous variations in UAV shapes. Second,
we provide an effective, hybrid search algorithm that co-
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Fig. 1: An overview of our computational UAV design
pipeline. (a): Our pipeline starts with a set of discrete and
continuous parameters. (b): The design parameters determine
the UAV shape (Sec. III) and controller (Sec. IV). (c): We
evaluate our design in a differentiable simulator for given
tasks (Sec. V). (d): The evaluation is then fed into our
optimization algorithm (Sec. VI), which runs both discrete
search and continuous optimization to update the design
parameters.

optimizes the discrete and continuous design parameters,
together with a differentiable UAV simulator we developed.
Finally, we evaluate our computational design pipeline on
dynamic flight tasks to demonstrate its value in both automat-
ically re-discovering canonical UAV designs and revealing
new higher-performance designs.

II. SYSTEM OVERVIEW

We present an overview of our computational UAV design
pipeline in Fig. 1. Our design consists of discrete and
continuous parameters (Fig. 1 (a)). The discrete parameters
refer to the choices of the graph grammar rules, which
determine the topology of the UAV shape (Fig. 1 (b) top).
The continuous parameters consist of the cage variables and
the LQR coefficients, which define the shape of individual
UAV components and the controller (Fig. 1 (b) bottom),
respectively. Once we define the design, we evaluate its
performance on a given task (Fig. 1 (c) top) using a dif-
ferentiable simulator (Fig. 1 (c) bottom). Finally, we use the
evaluation result to guide the discrete search and perform
gradient-based optimization (Fig. 1 (d)) to update the design
parameters (Fig. 1 (a)).

III. SHAPE DESIGN

Our shape design space can represent many existing UAV
designs of various sizes and topologies by incorporating
both continuous and discrete design parameters. Below, we
explain them in detail.

A. Continuous Parametrization
We first define a library of UAV components, e.g., rotors,

wings, rods, and batteries. The location of each component
in a UAV design is parametrized by continuous parameters,
e.g., position and orientation of a motor or installation
angle of a wing. Furthermore, we utilize a deformation-cage
representation [18]–[20] that enables continuous variations
of the geometry of certain components. This is especially
useful for expressing various wing designs with different
cross sections. More concretely, we immerse a default wing
shape in an axis-aligned bounding box and store the relative

Fig. 2: Illustration of a wing segment immersed in a defor-
mation cage (left) and its new shape after the handles of the
cage are moved (right).

position of each surface point from the wing (Fig. 2, left). By
varying the eight corners of the bounding box, we recalculate
the position of each surface point by a trilinear interpolation
using its stored relative position as the weight (Fig. 2, right).

B. Graph Grammar
The above continuous parametrization allows us to change

smoothly the position, orientation, or geometry of an in-
dividual UAV component. To assemble these components
into a UAV, we now introduce a graph-based grammar that
allows us to express various UAV topologies. The grammar,
illustrated in Fig. 3, includes a starting symbol and other non-
terminal and terminal symbols. It also includes a number of
rules which define the growth of a graph G from the starting
symbol. These rules are of the form of A! B where a non-
terminal symbol A is replaced by B, which contains terminal
or non-terminal symbols enabling the recursive growth. We
repeatedly apply rules to grow a graph from the starting
symbol and terminate when no more non-terminal symbols
exist in the graph. In our UAV designs, each terminal symbol
is a component from the UAV component library with a con-
tinuous parametrization described before, and the rules define
the permissive connections between these components.

As an example, we present the progressive update of a
graph that leads to a standard quadrotor design and highlight
the final design graph in Fig. 4.

To summarize, we represent a UAV shape with a graph
G and the union of the continuous parameters in its termi-
nal symbols. We stack these continuous parameters into a
column vector q and represent a UAV shape as a (G,q)
pair. The graph G determines the topology of a UAV, and
the vector q controls the size and shape of each individual
component. The (G,q) parametrization defines a mixed
continuous-discrete shape space which grows combinatori-
ally with the number of grammar rules.

IV. CONTROLLER DESIGN

For any flight task, a high-performing UAV requires not
only a proper shape design but also a suitable controller. In
this work, we focus on controlling the dynamic motion of a
UAV using the Linear-Quadratic Regulator (LQR), a classical
control method that stabilizes a UAV around its steady states,
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Fig. 3: Rules of our UAV grammar. S,B,L,C,Y are non-
terminal symbols. Rule r1 initializes the body structure, while
r2 ⇠ r4 can be used to extend the body. Note that each body
segment B can have at most one pair of wings attached to
it. Rule r5 connects the body with the wing. Rules r6 and r7
produce clockwise and counterclockwise rotors. Rule r8 and
r9 extend rotor joints with one or two additional rotor joints.
Rule r10 extends the body.

also known as trim states. In this section, we first describe
the dynamic model of our UAV designs. Next, we explain
our method for finding a trim state of a given UAV and
associating it with an LQR controller.

A. Dynamic Model
We first define the world and body frames for describing a

UAV’s motion. We use the standard North-East-Down (NED)
frame system in aerodynamics as the world frame. The body
frame defined on a UAV is a 3D coordinate system rigidly
attached at its center of mass with the three axes pointing
forward (x), right (y), and down (z). We define a UAV’s state
by its linear and angular positions and velocities [21], which
form a 13-dimensional vector s:

s =(x,q,vB,w). (1)

Here, x is the world position of the UAV’s center of mass,
q is the orientation expressed as a quaternion, vB denotes
the linear velocity of x in the body frame, and w is the
angular velocity in the world frame. The time derivative of
s is defined by Newton’s second law and Euler’s equations
stated below:

mẍ =mg+ f, (2)
Iẇ +w⇥ Iw =t, (3)

where g is gravitational acceleration, m the mass, I the
moment of inertia in the world frame, and f and t the
net forces and torques exerted from all rotors, wings, and
the fuselage in the world frame. Computing m is straight-
forward: we simply sum the component masses scaled by

Fig. 4: The derivation sequence for a quadrotor using our
graph grammar. This design uses 9 rules in total. We visu-
alize the partial design graphs in between rules and the final
quadrotor design after applying all rules. The non-terminal
and terminal nodes in the graphs are indicated by circles and
squares, respectively.

their change in volume. Computing the moment of inertia I

is more involved as components may be scaled, translated,
and rotated. To compute I, we first find each component’s
moment of inertia in its body frame followed by applying
the corresponding transformation. Next, we use the parallel
axis theorem to update the moment of inertia after shifting
the transformed component to its location in the body frame.
Accurate moments of inertia are important, as the orientation
of a UAV is usually the state component that is most sensitive
to control inputs.

To compute f and t , we take into account each rotor’s
orientation and relative position with respect to the center of
mass to find the direction of its thrust and induced torque.
The magnitude of the thrust is given by the controller to be
described shortly. For the fuselage and the wings, we sum
the lift and drag forces from each triangle in their deformed
meshes as described in [22], [23]:

fdrag =
1
2

rACd(f)kvrelk2d (4)

flift =�
1
2

rACl(f)kvrelk2n (5)

where r is the air density, A is the triangle’s area, Cd and Cl
are polynomial functions of the angle of attack f given in
[24], vrel is the relative air velocity, d= vrel

kvrelk2
, and n is the

triangle’s normal. We add the resulting net force and torque
to f and t , respectively. Inertial and gyroscopic effects of
rotor motion are omitted since the rotors comprise a small
fraction of the overall mass.

Eqns. (2, 3) give us enough information to compute the
time derivatives of s, which we compactly represent as the
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dynamic model M, whose definitions are given in previous
work [21]:

ṡ = M(s,a,G,q). (6)

Here, a is the action vector consisting of the magnitude
of thrust sent to each rotor. As stated above, the shape
parameters (G,q) influence the dynamic model, e.g., by
determining a rotor’s direction or a wing’s size. In short,
given the current design (G,q), the current state s, and the
current action a, the dynamic model M computes ṡ that
evolves the dynamic system.

B. LQR Control

After building the dynamic model for a given UAV sam-
pled from our shape space in Sec. III, we associate it with
an LQR controller parametrized by its trim state (s̄, ā) and
its Q and R matrices. A trim state is a state with zero linear
and angular accelerations:

( ˙̄x, ˙̄q, ˙̄vB, ˙̄w) =M(s̄, ā,G,q), (7)
˙̄vB, ˙̄w =0,0. (8)

Once a trim state is found, we linearize the dynamic model M
at the trim state and use the Q and R matrices to compute the
LQR gain matrix K from the Continuous Algebraic Riccati
Equation (CARE). The action a is then determined by the
control policy a =�K(s� s̄)+ ā.

Our controller design introduces a number of continu-
ous parameters (s̄, ā,Q,R). These control parameters and
the shape parameters (G,q) are the decision variables we
consider in the problem of co-designing a UAV. Additionally,
the controller design introduces to the co-design problem the
trim-state constraints described in Eqns. (7, 8).

V. SIMULATION

To evaluate the performance of a given UAV shape and
controller, we developed a differentiable UAV simulator
based on the dynamic model described in Sec. IV-A. Given
an initial state s0 of the UAV design, we compute the action
a0 from its LQR controller and integrate Eqn. (6) using the
fourth-order Runge Kutta method (RK4). The chosen time
step of Dt = 1/60 s was sufficiently small to avoid instability
while maintaining performance. With a loss function defined
on the sequence of states at each time step, we backpropagate
through each time step to compute its gradients with respect
to all the continuous parameters: q , s̄, ā, Q, and R. This
allows us to optimize them with classical gradient-based
numerical optimization methods. Our simulator also provides
the option to add random wind forces at each time step,
which helps us evaluate the robustness of UAV designs and
controllers.

VI. OPTIMIZATION

Given a specific flight task, we describe the problem of
finding an optimal UAV design as the following numerical

optimization problem:

min
G,q ,s̄,ā,Q,R

L({si},{ai}, s̄, ā), (9)

s.t. s0 = s̄, (10)
ai = ā�K(si� s̄), (11)
si+1 = si +DtM(si,ai,G,q), (12)

K = CARE(
∂M
∂ s

���
s̄

,
∂M

a

���
ā

,Q,R), (13)

Trim conditions from Eqns. (7,8), (14)
Bound constraints on q , s̄, ā,Q,R. (15)

We now explain the above definition in detail. The objective
of the flight task is described as a loss function L defined
on the sequences of states {si} and actions {ai} where
i = 0,1, · · · indicates the indices of time steps. We use the
trim state s̄ as the initial state s0 (Eqn. (10)). At the i-th
time step, we call the simulator with the current state si and
compute the action ai from the LQR controller (Eqns. (11)
and (13)). ai is clipped to respect the same bounds as ā.
It is worth mentioning that the trim state s̄ in Eqn. (11)
may be updated from time to time depending on the task
definition. For example, in the task of waypoint navigation,
s̄ is occasionally updated to the next waypoint on the flight
trajectory. The new state si+1 at the next time step is then
computed from si, ai, and the dynamic model M (Eqn. (12)).
Note that we use forward Euler time integration to write
Eqn. (12) for simplicity, and our implementation uses a more
sophisticated RK4 integrator as mentioned in Sec. V. Finally,
we include trim state constraints and bound constraints on
the continuous parameters (Eqn. (15)).

The above optimization problem is challenging to solve
because it mixes both discrete and continuous parameters.
We propose a hierarchical algorithm to separate the discrete
and continuous parameters in the optimization problem. At
a high level, our algorithm repeatedly samples new graphs
G from the graph grammar, evaluates the loss of each
G, and returns the UAV design with the lowest loss. For
each sampled graph G, we fix the graph parameter in the
optimization problem and reduce it to a purely continuous
optimization problem. We then run Sequential Quadratic Pro-
gramming (SQP), a gradient-based numerical optimization
method, to optimize all continuous parameters until SQP
reaches a local minimum or exhausts the computation budget.
This numerical optimization step associates a given G with
the best loss found for that graph, allowing us to employ
a discrete search strategy on top of that to improve the
choice of G. We provide two discrete search strategies in
our algorithm: a random and greedy search which randomly
samples the graph G and only stores the G with the lowest
loss, and a graph heuristic search (GHS) strategy [14], [15]
which trains a graph neural network to predict the loss of
each G to guide the search process. We summarize the whole
optimization algorithm in Alg. 1.
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Algorithm 1 Optimization algorithm
Inputs: a loss function L, a maximum number of graph
proposals N.
Output: UAV shape and controller design parameters: G,
q , s̄, ā, Q, R.
Lmin +•
for i 1 to N do

B Run discrete search to propose a graph
Sample a graph Gi from the grammar
B Run continuous optimization
qi, s̄i, āi,Qi,Ri SQP(Gi)
B Update the best loss for G
Li L(Gi,qi, s̄i, āi,Qi,Ri)
if Li < Lmin then

Lmin Li
G,q , s̄, ā,Q,R Gi,qi, s̄i, āi,Qi,Ri

end if

end for

VII. EXPERIMENTS

A. Implementation Details

The differentiable simulator is written in C++ with a
Python wrapper, and the remainder of our pipeline is im-
plemented in Python. Specifically, we use PyTorch Geomet-
ric [25] to implement the graph neural networks and the
SLSQP solver from NLopt [26] to optimize the continuous
design parameters. We run all of our experiments on Google
Cloud N2 instances with 80 cores and 64G or 80G of
memory. Our discrete search is parallelized across all CPU
cores.

B. Task Specification

We consider four flight tasks requiring a UAV to perform
dynamic motions: StraightLineTask, TurningTask, Takeoff-
Task, and TransitionTask. Each task is described by its loss
function defined on a one-second-long flight, which we state
in detail below:

a) StraightLineTask: This task requires following a
horizontal and straight trajectory at a predefined speed while
maximizing energy efficiency. 1 kg is added to the UAV’s
center of mass to represent a payload requirement, which we
found necessary to encourage the use of wings. Specifically,
we consider the following objective:

L = Ib({si},{ai})| {z }
Lenergy

+g max
i
kxi�x

ref
i k2

| {z }
Lpos

. (16)

The loss function consists of two terms. The first term Lenergy
estimates the battery current Ib, where Vk is the effective,
PWM voltage applied to motor k, nk is the motor RPM,
Kv is the motor velocity constant, Rw is the motor winding
resistance, and e = 0.95 is ESC efficiency:

Ib = Â
k

Vk�nk/Kv

Rwe
(17)

Minimizing Lenergy encourages energy-efficient flight. The
second term in the loss function penalizes the discrepancy
between the desired and actual location of the UAV at
each time step. In this task, the reference position x

ref
i =

(iDt ˙̄x(0),0,0), i.e., the UAV is expected to fly along the x-
axis at a constant speed equal to the trim speed. Putting
them together, L prefers a UAV design that can fly steadily
along the x-axis while maximizing its energy efficiency.
The coefficient g represents our preferences over the two
objectives, and we use g = 10 in all tasks.

b) TurningTask: Our TurningTask has an objective sim-
ilar to the StraightLineTask above but with two differences:
the payload requirement is removed, and the reference po-
sition x

ref
i is now evenly distributed on an arc whose radius

is 5 meters. This task prefers a UAV design that can closely
track the arc without consuming much battery power.

c) TakeoffTask: This task focuses on optimizing the
takeoff behavior of a UAV. Its objective is identical to the
TurningTask except that the reference point x

ref
i is now

evenly distributed on a two-meter-long vertical trajectory.
Additionally, we force the initial velocity to be 0 so that
the UAV must accelerate from a standstill and catch up to
the reference points above.

d) TransitionTask: Our last task is a concatenation of
takeoff and horizontal flight tasks. The objective function
is defined the same as in the TurningTask except that
the reference point x

ref
i is evenly distributed along a two-

meter-long vertical trajectory followed by a two-meter-long
horizontal trajectory. We design this task to encourage a UAV
design that can combine the benefits from quadrotors and
fixed-wing planes: quadrotors are suitable for vertical takeoff
and precise tracking but consume more battery power, while
fixed-wing planes may lower Lenergy but lead to a much larger
Lpos due to reduced maneuverability.

C. Our Results
We now present the UAV designs optimized by our compu-

tational pipeline. For each task, we run our pipeline described
in Alg. 1 with both random search and GHS and visualize the
optimized UAV shape designs they find in Fig. 5. We refer
interested readers to our supplemental material for the flight
videos of these UAV designs in simulation. Furthermore,
we report their final losses for each task in Table I and
the optimization progress of both random search and GHS
in Fig. 6. For both random search and GHS, we run 4000
iterations in Alg. 1, i.e., N = 4000. For all four tasks, the
overall search algorithm finishes within 15 to 20 hours.

Our first observation from Fig. 5 is that our pipeline
discovers high-performing UAV designs with topologies that
are quite different from any traditional designs. The novelty
and variety of these UAV topologies highlight the benefits
of incorporating our new graph grammar to express and
explore the discrete shape design space. In particular, our
graph grammar induces a hybrid shape space that flexibly
mixes rotors and wings in a single design, as can be seen in
the optimized design for our StraightLineTask. It is also in-
teresting that the optimized designs often exhibit a topology
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Fig. 5: Optimized UAV shapes discovered by our compu-
tational pipeline using random search (top row) and GHS
(middle row) for each of the four tasks (left to right). For
each task, the bottom row shows the better UAV from the
two rows above (measured by their final loss in Table I and
highlighted in green) with its deformation cages reset to their
default positions.

that matches an engineer’s instinct. For example, wings tend
to be favored in the StraightLineTask due to the emphasis
on horizontal flight. In the TakeoffTask and TransitionTask
however, the high-performing designs use multiple rotors
without wings, as wings hinder vertical takeoff.

A second observation is that although we run our algo-
rithm for up to 4000 iterations, we notice that both random
search and GHS search strategies reduce the loss drastically
in the first few hundreds of iterations, after which the
loss plateaus. This observation reveals specific properties
of the design space induced by our graph grammar: it is
not so difficult to find a UAV design with a near-optimal
performance for these tasks when searching in this design
space. However, a lot more effort is needed to push the
performance limit to its extreme. Furthermore, users of our
pipeline can use this observation as an empirical rule for
choosing the number of iterations N when running Alg. 1.

D. Discussion

a) Classic designs: To show the advantage of search-
ing over topologies using our computational UAV design
pipeline, we compare the performances of the best designs
discovered by our pipeline with a number of classic UAV
designs (Fig. 7) that we handcraft using our grammar rules.
For each classic design, only the continuous parameters are
optimized while the topology remains fixed. We report their
performance on each task in Table I. The performances
of these classic designs can serve as a sanity check for
the validity of our task definitions. For example, in our
TakeoffTask, we notice that the two quadrotors have similar
losses (2.48 and 2.30) while the octacopter has a much higher
loss (3.47). This is consistent with the definition of the loss
function: as copters are suitable for precise position tracking,
the loss largely comes from its power consumption, and an
octacopter should consume much more battery power than
quadrotors because it has more rotors (leading to greater

TABLE I: Performance of classic UAVs and the optimized
UAVs discovered by our method on each task. Each column
reports the loss values on a given task with the best number
highlighted in bold (lower is better). For the fixed-wing UAV
in our TransitionTask, we report N/A because no trim states
are found after trying 10 random seeds in the continuous
optimization problem.

UAVs StraightLine Turning Takeoff Transition

X-quadrotor 4.26 1.98 2.48 3.82
Plus-quadrotor 4.23 8.87 2.30 3.63

Octacopter 4.16 2.90 3.47 4.86
Fixed-wing 3.98 2.28 7.18 N/A

Double fixed-wing 3.78 2.47 5.46 5.01

Ours (random) 1.68 1.63 2.43 3.20
Ours (GHS) 0.95 1.55 2.60 2.80

mass). Similarly, in our StraightLineTask, both fixed-wing
planes perform better than the rotor-based designs because
we expect fixed-wing planes to be more efficient at carrying
heavy payloads.

From the table, we can conclude that both random search
and GHS manage to reveal UAV designs that outperform
the classic UAVs in three tasks, as indicated by their lower
losses, and achieve comparable performance on TakeoffTask.
Only upward thrust is required to solve the TakeoffTask,
which may favor simpler designs like the quadrotors. The
traditional, handcrafted designs appear to be suboptimal for
the other three standard flight tasks, suggesting that our
automatic, computational UAV design method is justified in
exploring non-traditional UAV topologies. In fact, as can be
seen in Fig. 5, most of the high-performing UAV designs
discovered by our method have quite unusual topologies that
are not covered by any of the classic designs in Fig. 7. These
novel topologies would be difficult to find using previous
UAV design methods without our graph grammar.

b) Discrete search: To compare the performances of
the random strategy and our GHS strategy on discrete
topology search, we test both strategies on all four tasks
with three individual runs. Each individual run searches for
4000 UAV designs. We report the objective loss of the best
designs discovered by each algorithm in Table I and plot the
optimization progress curves in Fig. 6. From Table I, we can
see GHS is able to find better designs than random search
within the same design budget in three out of four tasks.
This might be due to the additional learning phase in each
GHS iteration that progressively trains a prediction network
(i.e., heuristic function) from the searched designs [14].
In this way, the learned prediction network can guide the
search towards the high-performing designs in our large,
combinatorial search space. Fig. 6 shows the advantage of
GHS more clearly. On all four tasks, the random strategy
nearly converges to its best performance in a very early
stage. In contrast, GHS keeps improving the best design as it
learns a more accurate prediction function as the algorithm
proceeds.

It is worth mentioning that random search also performs
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Fig. 6: The optimization progress plots of our two search strategies: random search and GHS. The horizontal axis is the
number of designs sampled by the corresponding discrete search algorithm and optimized by SQP, and the vertical axis is
the objective of the best design as the optimization proceeds. We generate the curves from three individual runs for each
algorithm on each task.

Fig. 7: The five classic designs we use as baselines in Table I.
Top: (a) X-quadrotor, (b) Plus-quadrotor, (c) Octacopter.
Bottom: (d) Fixed-wing plane. (e) Double fixed-wing plane.

considerably well in our tasks because most high-performing
designs (as shown in Fig. 5) have relatively simple structures
which can be easily sampled by a random strategy. We still
keep GHS as an alternative option for discrete search since
as demonstrated in previous work [14], [15], GHS shows a
huge performance gain over random search when the optimal
designs tend to have more complicated structures.

c) Deformation cages: To see the benefits of incorpo-
rating deformation cages in our design space, we restrict
the deformation cages in the optimized UAVs found by our
pipeline to their default positions during the search process
(Fig. 5, bottom). We report the performances of the optimized
UAVs with and without deformation cage optimization in
Table II.

It is apparent that optimizing the deformation cages allows
for greater performance compared to the case where cage
parameter optimization is not allowed. The improvement
is especially profound in the StraightLine task, which is
understandable because the best design found leverages a
pair of large wings whose shapes are entirely controlled by
deformation cages. This observation confirms the benefit of
incorporating deformation cages in the shape design space.

d) Controller robustness: Finally, to validate the ro-
bustness of our controller design, we simulate the best
design found for each task with random wind gusts of a

TABLE II: Performances of the best UAVs discovered by our
method with and without optimization of their deformation
cages. For each task, we choose the better of the two designs
found by GHS and random search. Each column reports
the value of the loss function in a given task with the
better case highlighted in bold (lower is better). Allowing
optimization of cage parameters results in substantially better
performance.

UAVs StraightLine Turning Takeoff Transition

Ours 0.95 1.55 2.43 2.80

Ours (no cages) 3.03 2.22 3.26 3.23

TABLE III: The position tracking error Lpos of the optimized
UAVs discovered by our method when subjected to simulated
wind conditions. The numbers are rescaled so that Lpos = 1 is
the position tracking error in a clean simulation environment
(wind speed = 0).

Wind speed (m/s) StraightLine Turning Takeoff Transition

0.5 2.40 1.04 1.00 1.15
1.0 2.93 1.07 1.01 1.28
2.0 3.86 1.21 1.02 1.65

fixed speed. The direction of the wind is sampled uniformly
from the unit sphere, and changes every 0.25 seconds. We
report the maximum position tracking error Lpos for each
best-performing design in this noisy simulation environment
(Table III). We normalize the position tracking error by
dividing it by Lpos in the clean environment. In other words,
Lpos = 1 indicates the UAV has comparable performance in
the noisy and clean environments. The copter-like designs
for the TurningTask, TakeoffTask, and TransitionTask are
relatively insensitive to wind gusts due to their minimal
surface area. Their rotor configuration and low mass allows
them to counteract disturbances quickly. In comparison, the
winged design optimized for the StraightLineTask (and its
cargo carrying requirement) is sent off course much more
easily. All controllers manage to recover however, and allow
only a finite amount of deviation.
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VIII. CONCLUSIONS AND FUTURE WORK

Designing UAVs is challenging as the design space is large
and difficult to parameterize. We present a computational
UAV design pipeline that tackles this problem with a novel
graph grammar and a mixed continuous-discrete optimization
strategy. Our pipeline manages to discover unusual UAV
designs that substantially outperform traditional UAV designs
in three out of four evaluation tasks, while matching their
performance in the fourth. We verify the robustness of
the UAV shapes and LQR controllers co-designed by our
pipeline in noisy simulation environments.

While the approach presented in this work produces high-
performing aerial robot designs, there are several limitations
that we leave as future research directions. First and fore-
most, our pipeline evaluates all UAV designs in simulation
only and does not consider the details of fabrication. Al-
though previous works show that some topologies discovered
by our pipeline are indeed plausible to build [10], [11], we
can consider how to compile resulting designs to fabrication
plans that allow efficient manufacturing. A second limitation
in our pipeline is the restriction of the design space to
only rigid body structures, while many state-of-the-art aerial
robots use articulated structures [27] or even soft or bio-
inspired materials and components [28]. Expanding the shape
design space to incorporate such features could help us
find even higher-performing designs. A third limitation is
the assumption that all aerodynamic components such as
rotors and wings are independent of each other. Although
neglecting interactions between these components can still
result in successful sim-to-real transfer [11], a more detailed
treatment could produce designs that are even more likely
to perform well when fabricated. Finally, the flight tasks
we consider in this work have a short time horizon. In
future work, we plan to consider tasks with longer time
horizons requiring multiple distinct motions or more dynamic
maneuvers.
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