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End-to-end learning of 3D phase-only holograms
for holographic display
Liang Shi 1✉, Beichen Li1 and Wojciech Matusik1✉

Abstract
Computer-generated holography (CGH) provides volumetric control of coherent wavefront and is fundamental to
applications such as volumetric 3D displays, lithography, neural photostimulation, and optical/acoustic trapping.
Recently, deep learning-based methods emerged as promising computational paradigms for CGH synthesis that
overcome the quality-runtime tradeoff in conventional simulation/optimization-based methods. Yet, the quality of the
predicted hologram is intrinsically bounded by the dataset’s quality. Here we introduce a new hologram dataset, MIT-
CGH-4K-V2, that uses a layered depth image as a data-efficient volumetric 3D input and a two-stage supervised
+unsupervised training protocol for direct synthesis of high-quality 3D phase-only holograms. The proposed system
also corrects vision aberration, allowing customization for end-users. We experimentally show photorealistic 3D
holographic projections and discuss relevant spatial light modulator calibration procedures. Our method runs in real-
time on a consumer GPU and 5 FPS on an iPhone 13 Pro, promising drastically enhanced performance for the
applications above.

Introduction
Computer-generated holography (CGH) is the method

of digitally generating holographic interference patterns1.
The interference patterns form a hologram that diffracts
the incident light and establishes 3D images in the free
space. This volumetric beam-shaping capability is critical
to applications such as neural photostimulation2,3, opti-
cal/acoustic trapping4,5, and 3D displays6,7. While the
first two applications often merely require focusing tens
or hundreds of sparsely scattered 3D dots simultaneously,
this number grows to millions for the display application.
This imposes significant algorithmic and computational
challenges in creating holographic video systems. Besides,
existing spatial light modulators add another layer of
complicacy by requiring an amplitude-only or a phase-
only hologram8.
Both challenges are traditionally tackled by physical

simulation with direct encoding or iterative optimization.

Simulation-based methods represent the scene in point
clouds9, light fields10,11, polygon meshes12,13, an RGB-D
image14, or a multi-layer image14,15, and numerically
simulate diffraction and interference using the angular
spectrum method16 or Kirchhoff/Fresnel diffraction. The
resulting complex hologram is directly converted to a
phase-only hologram via amplitude discarding, temporal
averaging, or the double phase method (and its var-
iants)6,14,17,18. These methods work for continuous 3D
scenes; however, the simulation step is typically time-
consuming and the encoding step either works unreli-
ably or requires manual tuning to find the optimal fil-
tering parameters to achieve artifact-free results with
minimal artificial blur. Alternatively, optimization-based
methods use phase retrieval techniques19 or (stochastic)
gradient descent20,21 to iteratively find a phase-only
pattern whose propagated wavefront follows the target
amplitude distribution. While similarly time-consuming,
these methods may automatically discover phase-only
solutions superior to the simulation-based methods and
can be flexibly modeled for other downstream tasks such
as static pupil expansion22, aberration correction23,24,
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contrast enhancement25, and bridging discrepancy
between simulation and experiment26. Nevertheless,
high-quality results were only demonstrated for 2D and
multi-plane scenes27 instead of continuous 3D scenes
due to the high computational cost that scales linearly
with the depth resolution and the difficulty of specifying
defocus responses at depth-varying regions and occlu-
sion boundaries.
Recently, the differentiable nature of wave propagation

and the maturity of differentiable software infrastructures
has nurtured learning-based CGH algorithms that operate
and improve upon the previous two methods to address
the high computational cost. In particular, Deep-learning-
generated holography (DGH)28 and Tensor Holography
(TensorHolo)6 use simulation-based methods to synthe-
size a hologram dataset and employ supervised learning to
train a convolutional neural network (CNN) as an efficient
neural proxy of the simulator. Conversely, 3D-DGH29,
DeepCGH3, and Neural Holography24,27 leverage unsu-
pervised training by only specifying the desired amplitude
at one or multiple depth planes and rely on the CNN itself
to discover the optimal phase-only holograms analogous
to the optimization-based methods. These networks
significantly speed up the runtime, but they inherit
the remaining problems associated with their parent
methods. The employed 3D scene representations also
have intrinsic limitations in depicting the complete scene
geometry or providing high depth resolutions due to the
necessity of CNN compatibility. Specifically, TensorHolo
uses an RGB-D image, which only records the frontmost
surface points. The lack of wavefront diffracted from the
occluded points causes visible dark seams or brightness
attenuation at the background side of the occlusion
boundaries. In contrast, 3D-DGH and DeepCGH use a
voxel grid represented as a multi-channel RGB image to
accommodate occluded points; however, it becomes
extremely memory-inefficient and computational-heavy
when an ultra-high depth resolution, effectively a con-
tinuous 3D volume, is desired (i.e., hundreds or thousands
of unique depth planes).
In this work, we propose a series of techniques to

resolve the challenges above. Our techniques include the
first use of a layered depth image30 as a data-efficient 3D
representation for hologram synthesis, a new hologram
dataset computed by the silhouette-mask layer-based
method15 with ultra-dense layer partition (10,000 layers)
to remove the remaining occlusion artifacts, a two-stage
supervised+unsupervised training protocol that combines
the benefit of both simulation-based and optimization-
based methods, and a method to incorporate aberration
correction into the 3D hologram learning pipeline. The
resulting system, which we dubbed Tensor Holography
V2, can directly synthesize photorealistic 3D phase-only
holograms end-to-end without manual parameter tuning.

It is robust to different image statistics, depth misalign-
ment in real-world captured inputs, and different distance
configurations between the hologram plane and the 3D
volume. Besides, it can be customized for end-users with
different vision aberrations. We experimentally demon-
strate high image quality holographic 3D projection and
aberration correction results. We also discuss the novel
SLM calibration procedures used to achieve the demon-
strated results. Table 1 lists the acronyms frequently used
in this paper.

Results
Layered depth images and silhouette-mask layer-based
method
Occlusion modeling for 3D holograms is critical to the

perceived realism. This task has been approached at the
scene representation stage by rasterizing or ray-tracing an
RGB-D image (with a depth map) to only record the
frontmost visible surface14,31; rendering light fields to
further account for view-dependent effects11,32. It has also
been approached at the hologram computation stage via
ray casting for point-based methods33 and silhouettes for
FFT-based methods12,34. Both approaches are combined
to prune the computation of non-line-of-sight objects and
remove the wavefront of visible background objects
occluded by the foreground6. In “Methods”, we examine
the effectiveness of each approach and conclude that
although more time-consuming, performing occlusion
detection on the complete scene geometry is necessary to
produce a physically correct response. Common repre-
sentations that fully or largely serve this need include: (1)
general point clouds; (2) meshes; (3) voxel grids; (4) light
fields. Among them, general point clouds and meshes
are CNN-unfriendly due to their scene-dependent feature
lengths. Voxel grids operate in an explicit trade-off: the
memory cost increases linearly as the depth resolution
increases. Thus, it does not scale with high-resolution
input, and the CNN’s first convolution layer bottlenecks
the performance due to a vast number of input channels.
For light fields, if pixels are treated as points11,35, it is

Table 1 Acronyms used in this paper

Acronyms Phrase

LDI Layered depth images30

SM-LBM silhouette-mask layer-based method15

AA-DPM anti-aliasing double phase method6

BL-DPM band-limiting double phase method18

DDPM deep double phase method

ASM angular spectrum method16

TensorHolo Tensor Holography6
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inefficient as one point can be recorded multiple times in
different views, and avoiding double-counting requires
duplication detection; alternatively, if pixels are treated as
rays32, generating high-quality sub-holograms will require
an extremely dense angular sampling rate.
Here, we advocate a layered depth image (LDI) as an

efficient 3D scene representation. LDI is a classical image-
based rendering technique originally developed for novel
view synthesis30. Unlike an RGB-D image that stores a
single pixel at each spatial coordinate, it stores a sequence
of RGB-D images along the line of sight originating from
each spatial coordinate. Its first pixel records the first
front-facing surface intersecting with the line of sight, and
the second pixel records the second intersection assum-
ing the line of sight pierces through the scene, and so
forth till a maximum hit (layer) count is met (see Fig. 1a
for an illustration). LDI has several unique advantages for
holographic rendering applications. First, it is highly
configurable such that if only a single layer is rendered, an
LDI is equivalent to an RGB-D image; if all layers are
exhaustively rendered, it losslessly encodes the entire
scene for computing a physically correct hologram. In
either case or for a limited number of layers, any point in
the scene is only recorded once or discarded. Second,
unlike a voxel grid, an LDI records the exact depth for

every hit, decoupling the depth resolution with the
number of LDI layers. Third, the sequence of pixels is
recorded in a depth-sorted manner with wavefront from
further layers providing a diminishing contribution to the
hologram due to the occlusion of the frontal layers.
Consequently, we find that a few LDI layers (i.e., 5) are
sufficient to produce a close-to-ground-truth hologram,
and thus it is highly data-efficient. Fourth, once the
number of layers is set, its feature length is fixed and
independent of scene complexity; thus, it is CNN-
friendly. Finally, it can be efficiently rendered by the
existing real-time graphics pipeline via depth peeling (see
“Methods” for details).
To compute a 3D hologram from an LDI, ray casting can

be performed from each point’s belonging mesh at the
recorded 3D location. However, geometric occlusion for
diffraction calculation has been shown to cause minor
artifacts. Because runtime is ultimately unimportant for
dataset synthesis, we propose using the silhouette-mask
layer-based method15 (SM-LBM) with ultra-dense depth
partition to avoid the mixed-use of geometric and wave
optics models. SM-LBM was originally proposed to receive
a voxel grid input generated by slab-based rendering (see
Fig. 1b), which does not scale with increasing depth
resolution. Using SM-LBM with LDI is straightforward.

LDI-based rendering

3D volume

Points in the first layer
Points in the second layer
Points in the third layer

Front

Rear

Slab-based rendering

1 slab

a c

Rendered LDI layers (left: RGB, right: depth)b

virtual ray penetrating 
through the scene

Fig. 1 Comparison of LDI and voxel grid as 3D scene representation. a Rendering of an LDI records the intersections between a penetrating ray
(colored differently after every new hit) and the scene objects (front-facing surfaces) at every spatial location. b First three layers of the LDI rendered
for the scene in a. The number of valid pixels rapidly decreases as the index of the layer increases. c Rendering of a voxel grid that partitions the 3D
scene into equal-length slabs and generates one RGB image for each slab. The depth resolution is proportional to the number of slabs
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Any non-zero pixel in an LDI defines a valid 3D point
before depth quantization. When the number of depth
layers N is determined, each point is projected to its
nearest plane, and a silhouette is set at the same spatial
location. Denote the complex amplitude distribution of the
Nth layer LN 2 CRx ´Ry as

LN ¼ ANexp i
2πzN
λ

� �
ð1Þ

here, zN is the signed distance from the Nth layer to the
hologram plane, where a negative distance denotes a layer
behind the hologram plane and vice versa, AN 2 RRx ´Ry is
the amplitude of the layer, Rx, and Ry are the spatial
resolution along the x and y axis. The exponential term
defines the layer’s initial phase following Maimone et al.’s
formula to cause a smooth and roughly zero-mean phase
profile at the hologram plane14. We use the angular
spectrum method to propagate LN to the location of
N−1th layer

CN�1 ¼ ASM LN ; dlð Þ
¼ F�1 F LNð Þ � exp i2πdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ�2 � μ2 � v2

q� �� �
ð2Þ

where μ 2 RRx ´Ry and υ 2 RRx ´Ry are the spatial fre-
quencies along the x and y directions, dl is the layer
thickness (positive), � denotes Hadamard element-wise
product, F and F�1 are the 2D Fourier transform and
inverse Fourier transform operator. CN–1 is multiplied by
the binary silhouette mask at the N−1 layer

MN�1 x; yð Þ ¼ 0; AN�1ðx; yÞ> 0

1; AN�1ðx; yÞ ¼ 0

�
ð3Þ

and the complex amplitude at the N−1 layer is updated by
adding the masked complex field

LN�1 ¼ CN�1MN�1 þ LN�1 ð4Þ

Iterating this process until reaching the first layer, the
final complex hologram is obtained by propagating the
updated first layer to the hologram plane.
We further augment SM-LBM with aberration correc-

tion at the cost of computational efficiency. Reconsider-
ing the forward propagation of Nth layer LN, we only
process the occlusion of the frontal layer without adding
their content, namely removing the second addition term
in Eq. (4). After processing the occlusion of all frontal
layers, we propagate the resulted wavefront back to the
starting location of LN to obtain an occlusion-processed
L′N. We then perform aberration correction in the

frequency domain

L0NC
¼ F�1 FðL0N Þ �ΦzN

� � ð5Þ

where ΦzN 2 CRx ´Ry is a depth-dependent global aberra-
tion correction kernel in the Fourier domain. We detail
the process to obtain ΦzN , and an extension to model
depth-dependent spatially-varying aberration correction
in “Methods”. Finally, L0NC

is propagated to the target
hologram plane. This procedure is repeated indepen-
dently for the content at every discretized depth (i.e., from
layer 1 to N) and integrating the results of all procedures
at the target plane forms the final hologram. Note that the
required total number of propagation operations
increases to N2/2 compared with N in the standard SM-
LBM. This prevents N from being extremely high if
aberration correction is needed, but the computational
resource is limited.

MIT-CGH-4K-V2
SM-LBM and its aberration-correction variant are slow

due to sequential occlusion processing. To improve the
performance, we generate a new dataset with LDIs and
SM-LBM holograms and train a CNN to accelerate
inference. Generating this dataset requires setting three
critical parameters: the depth of the 3D volume, the
number of layers used by LDIs, and the number of layers
(depth resolution) used by SM-LBM.
We set the 3D volume depth to be 6mm under colli-

mated illumination to facilitate quantitative comparison
with the publicly available TensorHolo V1 network6, and
similarly for the random scene configuration. To deter-
mine the number of layers for LDIs, we compute the
mean peak signal to noise ratio (PSNR) and the mean
structure similarity index36 (SSIM) for the amplitude
maps of the holograms computed from LDIs with N ¼
1; 2; � � � ; 9 layers against the ones computed from LDIs
with N= 10 layers (after which we observe few valid
pixels) over 10 random scenes. The mean SSIM plateaus
after N= 5 (see Fig. 2a), reflecting a diminishing
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Fig. 2 SM-LBM hologram quality as a function of LDI layers and
depth discretization. a The addition of more LDI layers provides
diminishing returns on the hologram fidelity and the improvement
plateaus after 5 layers. b A depth resolution over 11 bits (2048) results
in a negligible difference in the image quality
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improvement with more layers. Thus, we choose N= 5
for this work, but more layers can be used for higher
accuracy. Similarly, to determine the number of layers for
SM-LBM, we compute the holograms using 2Nd layers for
Nd= 5, 7, 9, and 11, and compare the mean PSNR and the
mean SSIM of these holograms against the ones com-
puted from Nd= 13 over 10 random scenes. The mean
SSIM plateaus after Nd= 11 (see Fig. 2b), indicating
negligible improvement for the 3D image quality.
Nevertheless, we use a partition of 10,000 layers (13.28-bit
depth) as a showcase, which has not been demonstrated
previously. We rendered MIT-CGH-4K-V2, a new holo-
gram dataset with 4000 pairs of LDIs and holograms with
3800 for training, 100 for validation, and 100 for testing at
384 × 384 pixels similar to TensorHolo V1.

End-to-end learning of 3D phase-only hologram
In TensorHolo V1, the CNN directly maps the input

RGB-D image to the midpoint hologram, a wavefront
recording plane set to the center of the 3D volume that
minimizes the sub-hologram width, and phase-only
encoding is performed separately using anti-aliasing
double phase encoding (AA-DPM). However, both AA-
DPM and an analogous band-limiting double phase
method (BL-DPM)18 require manual tuning to find the
optimal low-pass filtering parameters that produce an
artifacts-free image with the minimal artificial blur. For
video or live streaming inputs where manual tuning is
infeasible, highly conservative filtering is required to keep
the entire sequence artifacts-free. Meanwhile, the low-
pass filterings in both methods are either spatially-

Input LDI
(or RGB-D)

Pre-encoding

focal stack

Target

focal stack

Pre-encoding
midpoint hologram

In-focus
object

Target midpoint
hologram

Residual block

Skip connection
(concatenation)

3×3 Conv

Batch Norm ReLU

+

–
–

–

–

–

Fourier filter

Phase-only
3D hologram

IFFT

Free-space
propagation

Double phase
encoding

FFT

Post-encoding

focal stack

Post-encoding
target hologram

Post-encoding midpoint hologram
Free-space
propagation

Pre-encoding
target hologram

Pre-encoding target
hologram (CNN-filtered)

1st stage (supervised learning)

2nd stage (unsupervised learning)

zero mean

zero standard deviation

Fig. 3 Overview of the training procedure. In the first stage, the CNN is trained to reproduce the ground truth midpoint hologram with direct
supervision and a dynamic focal stack loss. In the second stage, the CNN prediction is propagated to the target hologram plane, filtered by a second
CNN, double phase encoded, Fourier filtered, and back propagated to the center of the 3D volume to obtain the post-encoding midpoint hologram.
No ground truth phase-only hologram is provided, and the CNN is trained to discover an optimal solution with the dynamic focal stack loss between
the post-encoding focal stack and the target focal stack plus a regularization loss (see Eq. (11)). The Fourier space amplitude is visualized in the
logarithmic scale
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invariant or frequency-invariant; thus they do not adapt to
the content and may incur unnecessary filtering. In
addition, we observe the minimal filtering strength of
both methods grows with the sub-hologram width, lead-
ing to degraded performance when the 3D frustum is
placed far against the hologram plane. In practice, this
limits the image quality when designing compact holo-
graphic near-eye displays, where it is ideal for reducing
the physical distance between the SLM and the eyepiece
by computationally shifting the 3D image tens of milli-
meters behind the hologram.
Although a CNN can be trained to directly predict an

unconstrained 3D phase-only hologram using unsu-
pervised learning by only forcing the focal stack to match
the one produced by the target complex hologram3,
ablation studies have shown that removing the super-
vision of ground truth complex hologram noticeably
degrades the image quality6 and enforcing the phase-only
constraint can only worsen the performance. Moreover,
direct synthesis of phase-only holograms prevents using
midpoint holograms to reduce computational costs since
learning an unconstrained midpoint phase-only hologram
does not guarantee a uniform amplitude at the target
hologram plane.
We propose a two-stage supervised+unsupervised

training to overcome these challenges (see Fig. 3 for
visualization). The key insight is to keep using the
double phase principle to perform phase-only encoding
for retaining the advantage of learning the midpoint
hologram while embedding the encoding process into
the end-to-end training pipeline and relegating the
CNNs to discover the optimal pre-encoding complex
hologram through unsupervised training. We detail the
training process below and refer to this neural phase-
only conversion method as the deep double phase
method (DDPM).
The first stage supervised training is identical to Ten-

sorHolo V1 despite that we train two versions of CNNs
in V2. Both are trained to predict the target midpoint
hologram computed from the LDI input, but one receives
the full LDI, and the other receives only the first layer of
the LDI, the same RGB-D input as the V1 network
receives. The latter CNN has an additional job of infer-
ring the occluded points close to the depth boundaries
and filling in their missing wavefront. It is particularly
useful for reducing the rendering overhead and repro-
ducing real-world scenes captured as RGB-D images,
where physically capturing a pixel-aligned LDI is nearly
impossible.
Once the CNN excels at this task, we initialize the

second stage unsupervised training by applying a chain of
operations to the network-predicted midpoint hologram
~Hmid ¼ ~Amidei

~ϕmid . First, it is propagated to the target
hologram plane and pre-processed by a second CNN to

yield the pre-encoding target hologram prediction

~Htgt-pre ¼ ~atgt-pre~Atgt-preei
~ϕtgt-pre

¼ CNNfilter ASM ~Hmid; doffset
� �

exp i 2πdoffsetλ

� �� �
ð6Þ

where doffset is the signed distance from the midpoint
hologram to the target hologram plane, ~Atgt-pre is the
normalized amplitude, and ~atgt-pre is the scale multiplier.
The second CNN serves as a content-adaptive filter to
replace the Gaussian blur in AA-DPM. The exponential
phase correction term ensures that the phase after
propagation is still roughly centered at 0 for all color
channels. It is also critical to the success of AA-DPM,
which minimizes phase wrapping. Next, the standard
double phase encoding is applied to obtain a phase-only
hologram

P x; yð Þ ¼ 0:5~atgt-pree
i ~ϕtgt-pre x; yð Þ� cos�1 ~Atgt-pre x; yð Þð Þ; xþ y is odd

0:5~atgt-pree
i ~ϕtgt-pre x; yð Þþ cos�1 ~Atgt-pre x; yð Þð Þ; xþ y is even

(
ð7Þ

and no pre-blurring is applied in contrast to AA-DPM.
Third, the phase-only hologram is filtered in the Fourier
space to obtain the post-encoding target hologram
prediction

~Htgt-post ¼ F�1ðFðPÞ �MFourierÞ ð8Þ

where MFourier models a circular aperture in the Fourier
plane

MFourier x; yð Þ ¼ 1; x2 þ y2 � r2

0; x2 þ y2 > r2

�
ð9Þ

Here, r is the radius of the aperture in the pixel space. We
set it to half of the image resolution, letting the entire
first-order diffraction pass through the physical aperture.
Finally, the post-encoding target hologram prediction is
propagated back to yield the post-encoding midpoint
hologram

~Hmid-post ¼ ASMð ~Htgt-post;� doffsetÞ ð10Þ

By appending these operations, the second stage unsu-
pervised training fine-tunes the CNN prediction using the
dynamic focal stack loss calculated between the post-
encoding midpoint hologram and the ground truth
midpoint hologram, plus a regularization loss on the
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pre-encoding target hologram phase

ltgt-pre ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP eϕtgt-pre � eϕtgt-pre
� 	2

RxRy

vuuut þ eϕtgt-pre
ð11Þ

where � denotes the mean operation. The regularization
loss encourages the pre-encoding target hologram phase
to be zero mean and exhibit a small standard deviation.

This term minimizes phase wrapping during the double
phase encoding, which may not affect the simulated image
quality but degrade the experimental result. Without this
loss, the unregulated phase exhibits a large standard
deviation and shifts away from zero mean, leading to non-
negligible phase wrapping, especially when the maximum
phase modulation is limited to 2π.
In the second training stage, direct supervision from the

ground truth midpoint hologram is intentionally ablated.

T
en

so
rH

ol
o 

v2
R

G
B

-D
T

en
so

rH
ol

o 
v1

In-focus Out-of-focus

T
en

so
rH

ol
o 

v2
R

G
B

-D
T

en
so

rH
ol

o 
v1

25.95 dB
0.910

42.19 dB
0.995

42.81 dB
0.994

31.36 dB
0.932

Ground truth TensorHolo v1 TensorHolo v2 RGB-D TensorHolo v2 LDIsa

b

33.13 dB
0.940

40.87 dB
0.993

42.20 dB
0.994

37.45 dB
0.985

37.70 dB
0.986
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computer-rendered scenes. The yellow inset marks the region of interest. b Comparison of 3D holograms for real-world captured scenes
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This expands the solution space by allowing the CNNs to
freely explore the neural filtering to optimally match the
ground truth focal stack, which a user ultimately sees. It
also facilitates regularization on the pre-encoding target
hologram phase to better handle hardware limitations
(i.e., limited range of phase modulation). In practice, the
resulting prediction of the post-midpoint hologram phase
visually differs from the ground truth as high-frequency
details are attenuated or altered in a spatially-varying and
content-adaptive manner to avoid speckle noise. With
direct supervision that encourages retention of high-
frequency details, we find it negatively impacts speckle
elimination.
Collectively, the proposed two-stage training first excels

at reproducing the ground truth complex 3D holograms
at all levels of detail, then fine-tunes a display-specific
CNN for fully automatic speckle-free 3D phase-only
hologram synthesis. The second training stage takes fewer
iterations to converge; therefore, it is efficient to optimize
multiple CNNs for different display configurations upon
the completion of the first training stage. The training
process is detailed in “Methods”.

Simulation and experimental verification
We qualitatively and quantitatively evaluate Tensor-

Holo V2 CNNs in simulation. Figure 4 compares the
depth-of-field images reconstructed by the complex
hologram prediction of the V1 CNN, the V2 CNNs Stage
1, and the ground truth. The rendered LDIs and real-
world captured RGB-D inputs can be found in “Methods”.
The V2 RGBD-CNN largely removes the artifacts at the
occlusion boundaries, compensates the missing wavefront
with a plausible estimation of the occluded pixels, and is
robust to depth misalignment in the real-world captured
inputs (see Fig. 4b). When the foreground of the depth
boundary has extraordinary pixels, such as the specular
white dot in the yellow inset of the frog scene (see Fig. 4a,
Row 2 Column 3), the V2 RGBD-CNN can mis-
extrapolate the occlusion and produce an inaccurately
defocused background. The V2 LDI-CNN eliminates this
error with the LDI input (see Fig. 4a, Row 2 Column 4).
On the challenging validation set, V2 RGBD-CNN and V2
LDI-CNN perform similarly, outperforming the V1 CNN
and Maimone et al. by a large margin (see Table 2).
DDPM robustly performs the phase-only conversion at

detail-rich, high-frequency, high-contrast, and low-
amplitude regions with full automation (see Fig. 5a and
Supplementary Video 1/2). In all examples, DDPM
simultaneously achieves high resolution and speckle-free
reconstruction. In contrast, AA-DPM and BL-DPM have
to trade between resolution and speckle noise via different
filter strengths. Benefiting from the display-specific train-
ing, DDPM maintains the image resolution when holo-
gram planes are offset against the 3D volume (see Fig. 5b,

bottom), and the addition of the pre-filtering CNN pre-
serves the image contrast (see the human limbs and per-
petual calendar in Fig. 5b, middle). In opposite, using
AA-DPM with filter strength optimized for the midpoint
hologram is inadequate and produces ringing artifacts at
distant hologram planes (see Fig. 5b, top). Successful
DDPM training benefits from the regularization loss to
minimize phase wrapping (see Fig. 5c).
A benchtop holographic display is constructed and

calibrated for experimental verification (see Fig. 6 for a
schematic visualization and see Methods for hardware
and calibration details). We photographed 3D holograms
of rendered and real-world scenes generated by the V2
RGBD-CNN (see Fig. 7). The hologram planes are offset
differently from the 3D scenes to evaluate the DDPM
performance.
Compared to supplementary video 4 of TensorHolo

V1, the Big Buck Bunny result (see Fig. 7 top and Sup-
plementary Video 3 for continuous 3D refocusing) no
longer present visible dark seams around foreground
objects such as the bunny body and tree vines. The
mansion result (Fig. 7, middle) validates TensorHolo V2’s
robustness to depth misalignment. Unlike Extended Data
Fig. 9 of TensorHolo V1, artifacts on the blue window,
fence, and shrubs are eliminated, and the resulting 3D
image is more naturally defocused. Reconstructed at a
further distance, the boat result (Fig. 7, bottom) repro-
duces smooth color gradients of the wall and the water
surface owing to accurate phase control from a per-pixel
voltage-to-phase look-up table (see Methods for details).
The human and dog in the foreground are absent from
the speckle noise that would otherwise appear if AA-
DPM was used (see Fig. 5b). In all results, the V2 RGBD-
CNN consistently produces realistic depth boundaries
using a single RGB-D input. Supplementary Video 4
demonstrates real-time computation and playback of 3D
holograms calculated for cellphone-captured RGB-D
videos, where the V2 RGBD-CNN robustly handles depth
misalignment.
To demonstrate aberration correction, we place a

cylindrical lens with a focal length of 200mm in front of
the eyepiece to cause astigmatism (see Fig. 6). The cylinder

Table 2 Methods comparison on the validation set

Methods PSNR (dB) SSIM

Maimone et al.14 21.6 (21.3) 0.816 (0.808)

Shi et al.6 23.6 (23.2) 0.830 (0.821)

Ours (RGB-D) 29.4 (28.9) 0.945 (0.942)

Ours (LDI) 29.6 (29.1) 0.947 (0.944)

The unbracketed result is calculated for the amplitude map of the predicted
hologram, the bracketed result is calculated by averaging the results of a focal
stack with 15 most frequent depths and 5 random depths for each image.
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Fig. 5 Performance evaluation of DDPM. a Comparison of simulated reconstruction using DDPM, AA-DPM, and BL-DPM for midpoint hologram. For AA-
DPM and BL-DPM, two filter strengths are applied: the weaker one results in similar sharpness to DDPM; the stronger one results in an artifact-free image.
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axis is placed vertically, causing the originally in-focus
object to primarily exhibiting horizontal blurs. We per-
formed system identification (see Methods for details) and
generated an aberration-corrected dataset with 256 (8-bit)
depth levels. The trained network predicts holograms that
compensate for aberration for the random scene in the
validation set (see Fig. 8a), natural scenes, and test patterns
(see Fig. 8b). The captured front focus image in the tree
frog scene closely resembles the simulation of an una-
berrated system in Fig. 5a.

Discussion
Holographic 3D displays provide differentiating inter-

active experiences from cell phones or stereoscopic aug-
mented reality (AR) and virtual reality (VR) displays.
TensorHolo V2 makes a step towards the end-to-end
synthesis of 3D phase-only holograms. It is fully auto-
matic, robust to rendered and misaligned real-world
inputs, produces realistic depth boundaries, and corrects
vision aberrations. Reusing the minimalistic CNN archi-
tecture in TensorHolo V1, it runs in real-time on a
consumer-grade GPU and 5 FPS on an iPhone 13 Pro (see
“Methods” for runtime performance details), promising
real-time mobile performance for future-generation AR/
VR headsets and glasses.
To produce a more visually engaging 3D experience and

further reduce the computational complexity, many
extensions to the current method are worth investigating.
One is foveation-guided holographic rendering37–40. For
stereoscopic and light-field AR/VR displays, foveated
rendering lowers the image quality in the peripheral vision
to reduce rendering cost41–43. In the context of holo-
graphic rendering, a 2D hologram with synthetic blur can

be used for peripheral vision instead of a true 3D holo-
gram. As eye trackers become widely available in next-
generation head-mounted displays, this can be a powerful
computation-only approach to improve the rendering
performance.
Another direction is to support view-dependent effects.

Although an LDI provides sufficient scene information
from one perspective, view-dependent effects are not
explicitly modeled since disoccluded regions or out-of-
view objects will become visible from other views, as well
as occlusion of currently visible points. However, the
current localized 3D experience may be sufficient for
head-mounted displays since holograms can be dynami-
cally updated to reflect the changed user’s viewpoint as
the rendering of LDI is efficient. Yet, a hologram that
supports a view-dependent effect is beneficial when fab-
ricating ultra-high-resolution static copies. To design a
scene representation sufficient for modeling view-
dependent effect, one could render multiple LDIs from
evenly sampled viewpoints within an arc or a line of view
space, and compact LDIs into a master LDI plus side
information of disocclusion, new occlusion, and out of
view scene through point cloud duplication detection.
One could also replace LDI with recently emerged neural
scene representation (i.e., NeRF44), which uses a
coordinate-based neural network to memorize the entire
3D volume compactly. For hologram rendering, Zhang
et al.45 showed that Fourier domain segmentation and
stitching of multiple holograms rendered from different
viewports could provide a continuous view-dependent
effect for large baseline movement. Co-designing a
learning-based system to incorporate both new input
representations and new rendering schemes can further

Polarizer

Fiber-coupled laser

Collimating lens

Imaging
lens

Fourier
filter

Translation
stage

Beamsplitter

Cylindrical lens
(optional)

Eyepiece Camera

Spatial light
modulator (SLM)

Fig. 6 Schematic of the experimental holographic display prototype. The cylindrical lens is used for the aberration-correction experiment (see
Fig. 8). The control box of the laser and Labjack DAQ are not visualized
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unleash the power of holograms when higher resolution
SLMs become available.
The current system also requires a Fourier filter to

shield higher-order diffractions for producing a clean
image. Changing the image formation model to model
higher-order diffractions explicitly can potentially remove
the need for optical filtering46 and increase the method
compatibility to enable more flexible display designs.
Meanwhile, the current ground truth focal stack is ren-
dered under the assumption of a coherent imaging model,
the real-world depth of field yet follows the incoherent
imaging model. This can create a mismatch of defocus
blur when overlaying virtual objects with real-world
scenes. Using an incoherent rendering model to gen-
erate the target focal stack while matching it under the
constraint of the coherent propagation model may offer a

more realistic 3D perception without breaking holo-
graphy’s principle of operation. This can be further
combined with temporal time-multiplexing to improve
the image quality47.
The current system uses Maimone et al.’s phase initi-

alization to suppress speckle noise; however, the
artificially-enforced smooth phase distribution could
computationally constrain the angular spectrum and lead
to reduced eyebox. A potential way to maximize the
eyebox is to add pupil modeling in the Fourier plane
during the unsupervised training stage. Because the pre-
encoding phase is not forced to match the target holo-
gram, the filtering of eccentric pupils can encourage a
broad angular spectrum bandwidth to maintain image
quality for different pupil locations while keeping the
speckle low.

Front focus Rear focus

0 
m

m
 o

ffs
et

6 
m

m
 o

ffs
et

12
 m
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Fig. 7 Experimental demonstration of holographic 3D projections. Two computer-rendered (Top/Bottom) and one real-world captured (Middle)
scenes are displayed and photographed for target holograms located at three different distances (marked on the left) to the midpoint hologram. The
yellow box marks the foreground object of interest, and the blue box marks the background object of interest. Readers are encouraged to zoom in to
examine the image details
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When miniaturizing a holographic display into an
eyeglass-like form factor, one inevitably deals with spatially-
varying optical aberrations14. A successful demonstration of
a learning system that produces aberration-corrected con-
tent for an eyeglass-like prototype will be necessary for
industry adoption of holography.
Finally, the proposed system provides a limited

immersive 3D experience due to the SLM’s low space-
bandwidth product. Consequently, the development of
SLMs with higher pixel density, faster refresh rate, higher
bit depths, and possibly joint amplitude and phase mod-
ulation are imperative. Designing compact combining
optics (i.e., holographic optical element (HoE) lens, geo-
metric phase lens, and waveguides) with less aberration/
more substantial optical power and novel optical path
folding structures are also critical to the success of min-
iaturizing the display form factor48,49.

Materials and methods
Methods comparison for occlusion modeling
We examine methods for occlusion modeling using a

simple test scene consisting of two vertical bars with the
front bar perfectly occluding the lower half of the rear bar
(see Fig. 9, top). We assign different amplitudes to the
front and rear bars and repeat the bar pair horizontally for
visualization. The complete scene is represented by an
LDI with two layers: the first layer for the front bar plus
the top half of the rear bar and the second layer for the
bottom half of the rear bar. The rasterized scene is
represented by the LDI’s first layer. We tested six pairs of
input and CGH algorithms:
1. No occlusion: apply the point-based method to the

complete scene.
2. Occlusion only from input: apply the point-based

method to the rasterized scene.
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Fig. 8 Performance evaluation of vision aberration correction. a Top: A hologram calculated for normal vision. Middle: A hologram calculated
using the proposed variant of SM-LBM that corrects a synthetic astigmatic vision induced by a 200mm cylindrical lens. The calibration method is
detailed in Methods. Bottom: The CNN trained on the astigmatism-corrected dataset jointly performs diffraction simulation and aberration correction.
The PSNR and SSIM of the predicted hologram are marked on the top right corner. b Experimentally captured CNN-predicted holograms of a natural
scene and a test scene without (Left) and with (Right) astigmatism correction. The yellow and the blue box marks the foreground and the
background object of interest, respectively. The in-focus object in the corrected hologram exhibits horizontal blurs in the uncorrected hologram (i.e.,
treefrog’s tentacles, eye reflections, tree leaves, and test patterns)
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3. Geometric occlusion detection (input+computation):
apply the occlusion-aware point-based method to the
rasterized scene.

4. Geometric occlusion detection (computation): apply
the occlusion-aware point-based method to the
complete scene.

5. Wave-based occlusion detection (input+computation):
apply the silhouette-mask layer-based method to the
rasterized scene.

6. Wave-based occlusion detection (computation): apply
the silhouette-mask layer-based method to the
complete scene.

Figure 9 visualizes the result, and we conclude four
types of artifacts:
1. Leakage of the wavefront from occluded points.
2. Leakage of the wavefront from visible points.
3. Loss of wavefront from occluded points.
4. Inaccurate wavefront due to geometric optics

modeling.
Modeling occlusion at the scene representation stage

(setting 2) avoids the type 1 artifact and reduces the input
data size. Applying either type of occlusion detection at
the computation stage (setting 3 or 5) removes the type 2
artifact. If occlusion detection is wave-based (setting 5),
the type 4 artifact is also removed, resulting in an artifact-
free foreground reproduction. However, the type 3 artifact
persists (for setting 2, 3, and 5) due to the loss of occluded

points and their wavefronts, causing loss of amplitude or
attenuation at the background side of the occlusion
boundaries, which are the dominating artifact in Ten-
sorHolo V1. Retaining the complete scene and applying
wave-based occlusion detection (setting 6) avoid all types
of artifacts with the defocus response of the background
bars matching the ones in setting 1. However, this mode
incurs a higher data and computational cost.

Algorithm 1 Depth peeling for LDI rendering.

Front layer Front depth Rear layer Rear depth
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No occlusion Occlusion from input Geometric occlusion
on the complete scene

Geometric occlusion
on the RGB-D scene

Wave-based occlusion
on the complete scene

Wave-based occlusion
on the RGB-D scene
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Leakage of wavefront from occluded points

Leakage of wavefront from visible points

Loss of wavefront from occluded points

Inaccurate wavefront due to geometric 
optics modeling

Fig. 9 Methods comparison for occlusion modeling. The top 4 images constitute a 2-layer LDI that completely depicts the test scene. Different
types of artifacts are only marked for the front focus images
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Depth peeling for LDI rendering
Depth peeling is a rendering method originally devel-

oped for order-independent transparency (https://
developer.download.nvidia.com/assets/gamedev/docs/
OrderIndependentTransparency.pdf), and an LDI is an
intermediate product of the algorithm. To generate a N-
layer LDI, depth peeling runs the rendering pipeline N
times and simultaneously maintains two depth (Z) buf-
fers. One works conventionally, while the other remains a
constant at each rendering pass and sets the minimum
distance at which a fragment can be drawn without being
discarded. For each pass, the previous pass’s conventional
Z-buffer is used as the current minimal Z-buffer so that
the content right behind the previous pass is rendered.
Algorithm 1 outlines the pseudocode of depth peeling.

Details of training and runtime performance of TensorHolo
V2
The CNNs are implemented and trained using Tensor-

Flow 1.15 on an NVIDIA RTX 8000 GPU with Adam
optimizer. The hologram synthesis CNN uses the same
residual network architecture as the V1 CNN, which consists
of 30 convolution layers with 24 3 × 3 kernels per layer (see
ref. 6 for the discussion of design choice). The pre-filtering
CNN uses the same architecture but with only eight con-
volution layers and 8 3 × 3 kernels per layer. The pre-filtering
CNN can be omitted when the target hologram coincides
with the midpoint hologram. The learning rate is 0.0001 with
an exponential decay rate of β1= 0.9 for the first moment
and β1= 0.99 for the second moment. The first stage
training runs for 3000 epochs. The second stage training first
pre-trains the pre-filtering CNN 50 epochs for identity
mapping and then 1000 epochs jointly with the hologram
synthesis CNN. The pre-training accelerates the convergence
and yields better results. Both versions of CNN use a batch
size of 2, wdata= 1.0, wpcp= 1.0, wtgt-pre= 0.07, where wdata,
wpcp, wtgt-pre are the weights for the data fidelity loss, the
dynamic focal stack loss, and the regularization loss. Other
parameters remain the same as TensorHolo V1. Table 3 lists
the runtime performance of TensorHolo V2 RGB-D CNNs
on an NVIDIA TITAN RTX GPU and an iPhone 13 Pro.
The rendered LDIs and real-world captured RGB-D inputs
can be found in Fig. 10. In particular, the speed improvement
on the mobile device is following Moore’s law (1.1 to 5Hz
from iPhone 11 Pro to 13 Pro), which could promise real-
time performance in a horizon of 5 years if this trend con-
tinues. Other dedicated ASICs for CNN, such as Graphcore
IPU, Google TPU, and Groq TSP, may also enable efficient
edge and cloud hologram computation and streaming for
personal entertainment and enterprise devices.

Details of the experimental setup
The setup (see Fig. 6) uses a HOLOEYE PLUTO (VIS-

014) phase-only LCoS with a 1920 × 1080 pixels

resolution and a pixel pitch of 8 um. This SLM provides
a refresh rate of 60 Hz (monochrome) with a bit depth
of 8 bits. The laser is a FISBA RGBeam single-mode
fiber-coupled module with three optically aligned laser
diodes at 638, 520, and 450 nm wavelengths. The
diverging beam emitted by the laser is collimated by a
300 mm achromatic doublet (Thorlabs AC254-300-A-
ML) and polarized (Thorlabs LPVISE100-A) to match
the SLM’s function polarization direction. The beam is
directed to the SLM by a beamsplitter (Thorlabs
BSW10R), and the SLM is mounted on a linear trans-
lation stage (Thorlabs XRN25P/M). When displaying
holograms with different relative positions to the 3D
volumes, we adjust the linear translation stage to keep
the position of 3D volumes stationary and thus avoid
modifying the following imaging optics. The modulated
wavefront is imaged by a 125 mm achromat (Thorlabs
AC254-125-A-ML) and magnified by a Meade Series
5000 21 mm MWA eyepiece. An aperture is placed at
the Fourier plane to block excessive light diffracted by
the grating structure and higher-order diffractions. A
SONY A7M3 mirrorless full-frame camera paired with a
16−35 mm f/2.8 GM lens is used to photograph the
results. A Labjack U3 USB DAQ is used to send field
sequential signals and synchronize the display of color-
matched phase-only holograms.

Compensating hardware imperfection
Hardware imperfection can cause experimental results

to deviate from the idealized simulations23,24. Here we
discuss methods to compensate for three sources of
error: laser source intensity variation as a Gaussian
beam, SLM’s non-linear voltage-to-phase response, and
optical aberrations.
To calibrate the laser source intensity variation, we

substitute the SLM with a diffuser and capture the
reflected beam as a scaling map for adjusting the target
amplitude. A 5 × 5 median filter is applied to the mea-
surements to avoid pepper noise caused by dust on the
optical elements. A Gaussian mixture model can be used
to fit an analytical model of the resulting scaling map if
needed24.

Table 3 Runtime performance of TensorHolo V2 RGB-D
CNNs on GPU and iPhone 13 Pro

30 layers 15 layers 8 layers

NVIDIA TITAN RTX 40ms 25ms 17ms

iPhone 13 Pro 478ms 297ms 209ms

The numbers are reported for the CGH synthesis networks with a different
number of convolution layers. When the target hologram plane offsets from the
midpoint hologram, the addition of the pre-filtering CNN adds 4.8 ms for a
TITAN RTX and 60ms for an iPhone 13 Pro.
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Fig. 10 RGB-D and LDI inputs used in this paper. From top to bottom and left to right: ‘Couch’ and ‘Mansion’ from Kim et al.51, a living room
scene from Xiao et al.52, a forest scene from Padmanaban et al.32, ‘Wanderer’ and ‘Tree Creature’ by Daniel Bystedt, ‘PartyTug 6:00AM’ by Ian Hubert,
‘Flower’ from Mildenhall et al.53, ‘Big Buck Bunny’ by (© 2008, Blender Foundation), and ‘MIT-EECS-Logo’ by the authors. ‘Couch’, ‘Mansion’, and
‘Flower’ are real-world captured, and the rest are rendered. ‘Wanderer’ and ‘Tree Creature’ are LDIs and the subsequent layers are visualized at the top
corners. The yellow boxes mark the regions with obvious depth misalignment or inconsistency, the soft leave edges in the depth map of’Flower’ are
not marked
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For an imprecisely calibrated SLM, the non-linear
voltage-to-phase response can severally reduce display
contrast, especially for double-phase encoded hologram,
since achieving deep black requires offsetting the
checkerboard grating accurately by 1π. In many cases, the
pixel response is also spatially non-uniform; thus, using a
global look-up table is often inadequate (see Fig. 11).
Existing calibration methods operate on the change of
interference fringe offset (interferometry-based) or the
change of near/far-field diffraction pattern (diffraction-
based), but they cannot produce a per-pixel look-up table
(LUT)50. We propose a simple calibration procedure that
uses double phase encoding to accomplish this goal.
Specifically, for every 2-by-2 pixels, we keep the top right
and bottom left pixels at 0 as a reference and increase the
top left and bottom right pixels jointly from 0 to 255.
Without modifying the display layout, we set the camera
focus on the SLM and capture the intensity change for
the entire frame. If the phase modulation range for
the operating wavelength is greater equal than 2π, the
intensity of the captured image will decrease to the
minimum at 1π offset, return to the maximum at 2π
offset, and repeat this pattern for every 2π cycle. Denote
the kth captured image Ik, the absolute angular difference
in the polar coordinate between a reference pixel and an
active pixel set to k is

θkðx; yÞ ¼ 2cos�1

ffiffiffiffi
Ik

p ðx; yÞ � ffiffiffiffiffiffiffiffi
Imin

p ðx; yÞffiffiffiffiffiffiffiffi
Imax

p ðx; yÞ � ffiffiffiffiffiffiffiffi
Imin

p ðx; yÞ
� �

ð12Þ

where Imin(x, y) and Imax(x, y) are the minimal and
maximal intensities measured at a location (x, y) when
sweeping from 0 to 255. Let kmin(x, y) be the frame id
associated with the minimal measurement at (x, y), the

phase difference is given by

ϕk x; yð Þ ¼ θkðx; yÞ; k � kminðx; yÞ
2π � θkðx; yÞ; k > kminðx; yÞ

�
ð13Þ

Experimentally, we take high-resolution measurements
(24 megapixels) of the SLM response, downsample to the
SLM resolution, perform the calculations above, and fit a
linear generalized additive model (GAM) with monotonic
increasing constraint to obtain a smoothed phase curve
for producing a per-pixel LUT. For simplicity, the LUT is
directly loaded into the GPU memory for fast inference.
To reduce memory consumption, a multi-layer percep-
tron can be learned and applied as a 1 × 1 convolution24.
This in-situ calibration procedure eliminates potential
model mismatch between a separate calibration setup and
the display setup. The ability to accurately address phase
differences results in more accurate color reproduction,
i.e., producing deep black by accurately addressing 1π
phase offset (see Fig. 11).
The optical aberrations are corrected using a variant of

Maimone et al.14. Let ϕ0
d 2 CRx ´Ry (zero-padded to the

frame resolution) be an ideal sub-hologram that focus
plane wave to a signed distance d; we similarly use 5
Zernike polynomials:

Z3 ρ; θð Þ ¼ a3d 2ρ2 � 1
� �

focus ð14Þ
Z4 ρ; θð Þ ¼ a4d ρ2 cos 2θ

� �
vertical astigmatism

ð15Þ
Z5 ρ; θð Þ ¼ a5d ρ2 sin 2θ

� �
oblique astigmatism

ð16Þ
Z6 ρ; θð Þ ¼ a6d 3ρ2 � 2

� �
ρ cos θ

� �
horizontal coma

ð17Þ
Z7 ρ; θð Þ ¼ a7d 3ρ2 � 2

� �
ρ sin θ

� �
vertical coma

ð18Þ

ϕd ρ; θð Þ ¼ ϕ0
d ρ; θð Þe

i
P
j

Zj ρ;θð Þð Þ
corrected sub� hologram

ð19Þ
to model system aberrations, where ajd are Zernike
coefficients, ρ is the normalized polar radius, and θ is
the azimuthal angle. We perform a user calibration to
adjust coefficients ajd until the camera images a tightly
focused spot at d from the corrected sub-hologram ϕd.
Once the calibration completes, we propagate ϕd to its
focal plane to obtain the point spread function and
compute the corrected amplitude transfer function as
Φd ¼ ATFd ¼ FðPSFdÞ ¼ FðASMðϕd; dÞÞ, which we use
in Eq. (5) to perform frequency-domain aberration
correction for the occlusion-processed layer. Note that

Factory-provided global lookup table Calibrated per-pixel lookup table

Color mapped Color mapped

Fig. 11 Black modulation test using the double phase encoding.
Using the per-pixel lookup table calibrated via the proposed approach
produces a more uniform image with a deeper black level over the
one achieved by the factory-provided global lookup table.
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this calibration procedure can be performed for different
focal distances, and parameters can be piecewise linearly
interpolated14.
For compact eyeglass-like setups (i.e., Maimone et al.’s

compact AR prototype), the same procedure can be followed
by determining the unmagnified image location and the
optical power of the diffractive lens while calibrating the
kernel parameters to correct the system and eye aberrations
jointly. Using a diffractive lens can yet cause strong aberra-
tions that require spatially-varying aberration correction. In
this case, we can calibrate the display at multiple points (i.e.,
15 points) and update the above procedure by convolving a
spatially varying PSFd(x, y) calculated by interpolating the
nearest measured parameters. Note that this operation can
only be performed in the spatial domain but not in the
Fourier domain. However, GPUs can accelerate this process,
and speed is ultimately not critical for dataset generation. On
the learning side, the CNN needs to receive an additional
two-channel image that records the normalized xy coordi-
nates to learn aberration correction in a spatially-varying
manner. While this advanced task is exciting with a clear
solution path, we defer it to future work.
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