
Learning-based Video Motion Magnification

Tae-Hyun Oh1,⇤ Ronnachai Jaroensri1,⇤ Changil Kim1 Mohamed Elgharib2

Frédo Durand1 William T. Freeman1,3 Wojciech Matusik1

1MIT CSAIL, Cambridge, MA, USA
2HBKU QCRI, Doha, Qatar

3Google Research

Abstract. Video motion magnification techniques allow us to see small
motions previously invisible to the naked eyes, such as those of vibrating
airplane wings, or swaying buildings under the influence of the wind.
Because the motion is small, the magnification results are prone to
noise or excessive blurring. The state of the art relies on hand-designed
filters to extract motion representations that may not be optimal. In
this paper, we seek to learn the filters directly from examples using deep
convolutional neural networks. To make training tractable, we carefully
design a synthetic dataset that captures small motion well, and use
two-frame input for training. We show that the learned filters achieve
high-quality results on real videos, with less ringing artifacts and better
noise characteristics than previous methods. While our model is not
trained with temporal filters, we found that the temporal filters can be
used with our extracted representations up to a moderate magnification,
enabling a frequency-based motion selection. Finally, we analyze the
learned filters and show that they behave similarly to the derivative filters
used in previous works.

Keywords: Motion manipulation, motion representation, deep convolu-
tional neural network

1 Introduction

The ability to discern small motions enables important applications such as
understanding a building’s structural health [3] and measuring a person’s vital
sign [4]. Video motion magnification techniques allow us to perceive such motions.
This is a di�cult task, because the motions are so small that they can be
indistinguishable from noise. As a result, current video magnification techniques
su↵er from noisy outputs and excessive blurring, especially when the magnification
factor is large [1,5,6,2].

Current video magnification techniques typically decompose video frames into
representations that allow them to magnify motion [1,5,6,2]. Their decomposition
typically relies on hand-designed filters, such as the complex steerable filters [7],
which may not be optimal. In this paper, we seek to learn the decomposition filter

⇤indicates equal contributions.

ar
X

iv
:1

80
4.

02
68

4v
1

 [
cs

.C
V

]
 8

 A
pr

 2
01

8

2 Authors Suppressed Due to Excessive Length

Original frame Ours[Wadhwa et al. 2013]

𝒙

𝒕

𝒙

𝒕

[Zhang et al. 2017]

Original frame

Ours

Fig. 1. While our model learns spatial decomposition filters from synthetically generated
inputs, it performs well on real videos with results showing less ringing artifacts and noise.
[Left] the crane sequence magnified 75⇥ with the same temporal filter as [1]. [Right]
Dynamic mode magnifies di↵erence (velocity) between consecutive frames, allowing us
to deal with large motion as did Zhang et al . [2]. The red lines indicate the sampled
regions for drawing x-t and y-t slice views.

directly from examples using deep convolutional neural networks (CNN). Because
real motion-magnified video pairs are di�cult to obtain, we designed a synthetic
dataset that realistically simulates small motion. We carefully interpolate pixel
values, and we explicitly model quantization, which could round away sub-level
values that result from subpixel motions. These careful considerations allow us
to train a network that generalizes well in real videos.

Motivated by Wadhwa et al . [1], we design a network consisting of three main
parts: the spatial decomposition filters, the motion representation manipulator,
and the reconstruction filters. To make training tractable, we simplify our training
using two-frame input, and the magnified di↵erence as the target instead of fully
specifying temporal aspects of motion. Despite training on the simplified two-
frames setting and synthetic data, our network achieves better noise performance
and has fewer edge artifacts (See Fig. 1). Our result also suggests that the learned
representations support linear operations enough to be used with linear temporal
filters up to a moderate magnification factor. This enables us to select motion
based on frequency bands of interest.

Finally, we visualize the learned filters and the activations to have a better
understanding of what the network has learned. While the filter weights themselves
show no apparent pattern, a linear approximation of our learned (non-linear)
filters resembles derivative filters, which are the basis for decomposition filters in
the prior art [5,1].

The main contributions of this paper are as follows:

– We present the first learning-based approach for the video motion magnifica-
tion, which achieves high-quality magnification with fewer ringing artifacts,
and has better noise characteristics.

– We present a synthetic data generation method that captures small motions,
allowing the learned filters to generalize well in real videos.

– We analyze our model, and show that our learned filters exhibit similarity to
the previously hand-engineered filters.

We will release the codes, trained model, and datasets available online.

Learning-based Video Motion Magnification 3

Method Liu et al . [8] Wu et al . [5] Wadhwa et al . [1] Wadhwa et al . [6] Zhang et al . [2] Ours

Spatial decom-
position

Tracking, optical
flow

Laplacian pyra-
mid

Steerable filters Riesz pyramid Steerable filters
Deep convolu-
tion layers

Motion isola-
tion

-
Temporal band-
pass filter

Temporal bandpass
filter

Temporal bandpass
filter

Temporal band-
pass filter (2nd-
order derivative)

Subtraction or
temporal band-
pass filter

Representa-
tion denoising

Expectation-
Maximization

-
Amplitude weighted
Gaussian filtering

Amplitude weighted
Gaussian filtering

Amplitude
weighted Gaus-
sian filtering

Trainable convo-
lution

Table 1. Comparisons of the prior arts.

2 Related Work

Video motion magnification. Motion magnification techniques can be divided
into two categories: Lagrangian and Eulerian approaches. Lagrangian approach
explicitly extracts the motion field (optical flow) and uses it to move the pixels
directly [8]. The Eulerian approaches [5,1,6], on the other hand, decompose video
frames into representations that facilitate manipulation of motions, without
requiring explicit tracking. These techniques usually consist of three stages: de-
composing frames into a motion representation, manipulating the representation,
and reconstructing the manipulated representation to magnified frames. Wu et
al . [5] use a spatial decomposition motivated from the first-order Taylor expan-
sion, while Wadhwa et al . [1,6] use the complex spatial pyramid [7] to extract a
phase-based representation. Eulerian techniques are useful for revealing subtle
motions, but they are hand-designed [5,1,6], and do not take into account many
issues such as occlusion. Because of this, they are prone to noise and often su↵ers
from excessive blurring. Our technique belongs to the Eulerian approach, but our
decomposition is directly learned from examples, so it has fewer edge artifacts
and better noise characteristics.

One key component of the previous motion magnification techniques is the
multi-frame temporal filtering over the representations, which helps to isolate
motions of interest and to prevent noise from being magnified. Wu et al . [5] and
Wadhwa et al . [1,6] utilize standard frequency bandpass filters. Their methods
achieve high-quality results, but su↵er from degraded quality when large motions
or drifts occur in the input video. Elgharib et al . [9] and Zhang et al . [2]
address this limitation directly. Elgharib et al . [9] model large motions using
a�ne transformation, while Zhang et al . [2] use a di↵erent temporal processing
equivalent to a second-order derivative (i.e., acceleration). On the other hand,
our method achieves comparable quality even without using temporal filtering.
The comparisons of our method to the prior arts are summarized in Table 1.

Deep motion representation for video synthesis. Frame interpolation can
be viewed as a complement problem to the motion magnification, where mag-
nification factor is less than 1. Recent techniques demonstrated high-quality
results by explicitly shifting pixels using either optical flow [10,11,12] or pixel-
shifting convolution kernels [13,14]. However, these techniques usually require
re-training when changing the manipulation factor. Our motion representation
can be directly configured for varying magnification factors without re-training.
Additionally, our method does not use any explicit pixel move that would require

4 Authors Suppressed Due to Excessive Length

a di↵erentiable bilinear sampling module, which may not work well with subpixel
motion. For frame extrapolation, there is a line of recent work [15,16,17] that
directly synthesizes RGB pixel values to predict dynamic video frames in the
future, but their results are often blurry. Our work focusing on magnifying motion
within a video, without concerns about what happens in the future.

3 Learning-based Motion Magnification

In this section, we introduce the motion magnification problem and our learning
setup. Then, we explain how we simplify the learning to make it tractable.
Finally, we describe the network architecture and give the full detail of our
dataset generation.

3.1 Problem statement

We follow Wu et al .’s and Wadhwa et al .’s definition of motion magnification
[5,1]. Namely, given an image I(x, t) = f(x + �(x, t)), where �(x, t) represents
the motion field as a function of position x and time t, the goal of motion
magnification is to magnify the motion such that the magnified image Ĩ becomes

Ĩ(x, t) = f(x + (1 + ↵)�(x, t)), (1)

where ↵ is the magnification factor. In practice, we only want to magnify certain
signal �̃(x, t) = T (�(x, t)), for a selector T (·) that selects motion of interest,
which is typically a temporal bandpass filter [1,5].

While previous techniques rely on hand-crafted filters [1,5], our goal is to learn
a set of filters that extracts and manipulates representations of the motion signal
�(x, t) to generate output magnified frames. To simplify our training, we consider
a simple two-frames input case. Specifically, we generate two input frames, Xa

and Xb with a small motion displacement, and an output motion-magnified
frame Y of Xb with respect to Xa. This reduces parameters characterizing
each training pair to just the magnification factor. While this simplified setting
loses the temporal aspect of motion, we will show that the network learns a
linear enough representation w.r.t . the displacement to be compatible with linear
temporal filters up to a moderate magnification factor.

3.2 Deep Convolutional Neural Network Architecture

Similar to Wadhwa et al . [1], our goal is to design a network that extracts a
motion representation, which we can manipulate simply by multiplication, and
reconstructs a magnified frame. Therefore, our network consists of three parts:
the encoder Ge(·), the manipulator Gm(·), and the decoder Gd(·), as illustrated
in Fig. 2. The encoder acts as a spatial decomposition filter that extracts a
motion representation (analogous to the phase of the steerable pyramid and
Riesz pyramid [1,6]). The manipulator takes this representation and manipulates

Learning-based Video Motion Magnification 5

Magnification*
factor

:*Residual*Block

:*Conv layers

:*Non9trainable*layers

ReLu
Conv

Conv

!Conv_k3s29ReLu

Res.*Blk.

Conv_k7s1*9!ReLu
[ℎ,$,3]

[ℎ,$,16]

[ℎ/2,$/2,32]

ReLu
Conv_k3s2

[ℎ/4,$/4,32]

Res.*Blk.

Res.*Blk.

ReLu
Conv_k3s1

[ℎ/2,$/2,32]

Res.*Blk.

Res.*Blk.

Encoder

Visual*
repr.

Motion*
repr.

Input

Decoder

Upsam
ple

Res.*Blk.

Res.*Blk.

Concat.
[ℎ/2,$/2,32]

[ℎ/2,$/2,64]

Upsam
ple

[ℎ,$,64]
Conv_k3s19ReLu

[ℎ,$,32]
Conv_k7s1

[ℎ,$,3]

9*Res.*Blks.Visual*
repr.

Motion*
repr.

Output

[ℎ/2,$/2,32]

Res.*Blk.

ReLu
Conv_k3s1

Conv_k3s1
[ℎ/2, $/2,32]

,
Motion*
repr.
-./

Motion*
repr.
-.

Manipulator

0102

Magnified*
Frame
34

Manipulator

Decoder
Visual*
repr.

Motion*
repr.

Shared

,

Encoder

Visual*
repr.

Motion*
repr.

Encoder

Visual*
repr.

Motion*
repr.

Overview3of3architecture

Input*Frames

Res.*Blk.

Res.*Blk.

g(•) h(•)

(a) (b)

Fig. 2. Our network architecture. (a) Overview of the architecture. Our network
consists of 3 main parts: the encoder, the manipulator, and the decoder. During training,
the inputs to the network are two video frames, (Xa,Xb), with a magnification factor ↵,
and the output is the magnified frame Ŷ. (b) More detail on each part. Convhci khki shsi
denotes a convolutional layer of c channels, k ⇥ k kernel size, and stride s.

it to magnify the motion (by multiplying the di↵erence). Finally, the decoder
reconstructs the modified representation into the resulting motion-magnified
frames.

Our encoder and decoder are fully convolutional, which enables it to work on
any resolution [18], and use residual blocks to generate high-quality output [19].
To reduce memory footprint and increase the receptive field, we downsample
the activation by 2⇥ at the beginning of the encoder, and upsample it at the
end of the decoder. We downsample with the strided convolution [20], and
we use nearest-neighbor upsampling followed by a convolution layer to avoid
checkerboard artifacts [21]. We experimentally found that three 3 ⇥ 3 residual
blocks in the encoder and nine in the decoder generally yield good results.

While Eq. (1) suggests no intensity change (constant f(·)), this is not true
in general. This causes our network to also magnify intensity changes. To cope
with this, we introduce another output from the encoder that represents intensity
information (visual representation) similar to the amplitude of the steerable
pyramid decomposition. This representation reduces undesired intensity magnifi-
cation as well as noise in the final output. We downsample the representation 2⇥
further because it helps reduce noise. We denote the visual and motion outputs
of the encoder as V = Ge,visual(X) and M = Ge,motion(X), respectively. During
training, we add a regularization loss to separate these two representations, which
we will discuss in more detail later.

We want to learn a motion representation M that is linear with respect
to �(x, t). So, our manipulator works by taking the di↵erence between motion
representations of two given frames, and directly multiplying a magnification
factor to it. That is,

Gm(Ma,Mb,↵) = Ma + ↵(Mb�Ma). (2)

6 Authors Suppressed Due to Excessive Length

Linear Non-Linear

Fig. 3. Comparison between linear and non-linear manipulators. While the
two manipulators are able to magnify motion, the linear manipulator (left) does blur
strong edges (top) sometimes, and is more prone to noise (bottom). Non-linearity in
the manipulator reduces this problem (right).

In practice, we found that some non-linearity in the manipulator improves
the quality of the result (See Fig. 3). Namely,

Gm(Ma,Mb,↵) = Ma + h (↵ · g(Mb � Ma)) , (3)

where g(·) is represented by a 3 ⇥ 3 convolution followed by ReLU, and h(·) is a
3 ⇥ 3 convolution followed by a 3 ⇥ 3 residual block.

Loss function. We train the whole network in an end-to-end manner. We use
l1-loss between the network output Ŷ and the ground-truth magnified frame Y.
We found no noticeable di↵erence in quality when using more advanced losses,
such as the perceptual [22] or the adversarial losses [23]. In order to drive the
separation of visual and motion representations, we perturbed the intensity of
some frames, and expect the visual representations of perturbed frames to be
the same, while their motion representation remain unchanged. Specifically, we
create perturbed frames X0

b and Y0, and we impose loses between V0
b and V0

Y ,
Va and Vb, and M0

b and Mb. We used l1-loss for all regularizations. Therefore,

we train the whole network G by minimizing the final loss function L1(Y, Ŷ) +
�(L1(Va,Vb)+L1(V

0
b,VY 0)+L1(Mb,M

0
b)), where � is the regularization weight

(we set to 0.1).

Training. We use ADAM [24] with �1 = 0.9 and �2 = 0.999 to minimize the loss
with the batch size 4. We set the learning rate to 10�4 with no weight decay. In
order to improve robustness to noise, we add Poisson noise with random strengths
whose standard deviation is up to 3 on a 0�255 scale for a mid-gray pixel.

Applying 2-frames setting to videos Since there was no temporal concept
during training, our network can be applied as long as the input has two frames.

Learning-based Video Motion Magnification 7

We consider two di↵erent modes where we use di↵erent frames as a reference. The
Static mode uses the 1st frame as an anchor, and the Dynamic uses the previous
frames as a reference, i.e., we consider (Xt�1,Xt) as inputs in the Dynamic mode.

Intuitively, the Static mode follows the classical definition of motion magni-
fication as defined in Eq. (1), while the Dynamic mode magnifies the di↵erence
(velocity) between consecutive frames. Note that the magnification factor in
each case has di↵erent meanings, because we are magnifying the motion against
a fixed reference, and the velocity respectively. Because there is no temporal
filter, undesired motion and noise quickly becomes a problem, and achieving
high-quality result is more challenging.

Temporal operation. Even though our network has been trained in the 2-frame
setting only, we find that the representation it extracts is linear enough w.r.t .
the displacement to be compatible with linear temporal filters. Given the motion
representation M(t) of a video (extracted frame-wise), we replace the di↵erence
operation with a pixel-wise temporal filter T (·) across the temporal axis in the
manipulator Gm(·). That is, the temporal filtering version of the manipulator,
Gm,temporal(·), is given by,

Gm,temporal(M(t),↵) = M(t) + ↵T (M(t)). (4)

The decoder takes the temporally-filtered motion representation and the visual
representation of the current frame, and generates temporally filtered motion
magnified frames.

3.3 Synthetic Training Dataset

Obtaining real motion magnified video pairs is challenging. Therefore, we utilize
synthetic data which can be generated in large quantity. However, simulating
small motions involves several considerations because any small error will be
relatively large. Our dataset is carefully designed and we will later show that the
network trained on this data generalizes well to real videos. In this section, we
describe considerations we make in generating our dataset.

Foreground objects and background images. We utilize real image datasets
for their realistic texture. We use 200, 000 images from MS COCO dataset [26] for
background, and we use 7, 000 segmented objects the PASCAL VOC dataset [25]
for the foreground. As the motion is magnified, filling the occluded area becomes
important, so we paste our foreground objects directly onto the background
to simulate occlusion e↵ect. Each training sample contains 7 to 15 foreground
objects, randomly scaled from its original size. We limit the scaling factor at 2 to
avoid blurry texture. The amount and direction of motions of background and
each object are also randomized to ensure that the network learns local motions.

Low contrast texture, global motion, and static scenes. The training
examples described in the previous paragraphs are full of sharp and strong edges
where the foreground and background meet. This causes the network to generalize
poorly on low contrast textures. To improve generalization in these cases, we add

8 Authors Suppressed Due to Excessive Length

(a) Foreground and
background objects

(b) Background only (c) Blurry background

Fig. 4. Sample data. Example frames from our dataset. (a) Our data consists of
pasted foreground objects using segmentation from PASCAL VOC [25] and background
from MS COCO dataset [26]. (b) To ensure our network learns global motion, the second
part of our dataset only has background moving. (c) To ensure low contrast texture is
well-represented, we include data with the background blurred. We add another two
parts with the same specification as (b) and (c) with background motion removed so
that the network learns the changes that are due to noise only.

two types of examples: where 1) the background is blurred, and 2) there is only
a moving background in the scene to mimic a large object. These improve the
performance on large and low contrast objects in real videos.

Small motion can be indistinguishable from noise. We find that including
static scenes in the dataset helps the network learn changes that are due to noise
only. We add additional two subsets where 1) the scene is completely static, and
2) the background is not moving, but foreground is moving. With these, our
dataset contains a total of 5 parts, each with 20, 000 samples of 384⇥ 384 images.
Fig. 4 shows example frames from our dataset.

Input motion and amplification factor. Motion magnification techniques
are designed to magnify small motions at high magnifications. The task becomes
even harder when the magnified motion is very large (e.g . > 30 pixels). To ensure
the learnability of the task, we carefully parameterize each training example to
make sure it is within a defined range. Specifically, we limit the magnification
factor ↵ up to 100 and sample the input motion (up to 10 pixels), so that the
magnified motion does not exceed 30 pixels.

Subpixel motion generation. How subpixel motion manifests depends on
demosaicking algorithm and camera sensor pattern. Fortunately, even though our
raw images are already demosaicked, they have high enough resolution that we can
downsample to avoid artifacts from demosaicking. To ensure proper resampling,
we reconstruct our image in the continuous domain before applying translation
or resizing. We find that our results are not sensitive to the interpolation method
used, so we chose bicubic interpolation for the reconstruction. To reduce error
that results from translating a very small amount, we first generate our dataset at
a higher resolution (where the motion will appear larger), then downsample each
frame to the desired size. We reduce aliasing when downsampling by applying a
Gaussian filter whose kernel is 1 pixel in the destination domain.

Subpixel motion appears as small intensity changes that are often below
the 8-bit quantization level. These changes are often rounded away especially

Learning-based Video Motion Magnification 9

(a) Phase (b) Ours (c) Input (d) Phase (e) Ours

Fig. 5. Qualitative comparison. (a,b) Baby sequence (20⇥). (c,d,e) Balance sequence
(8⇥). The phase-based method shows more ringing artifacts and blurring than ours
near edges (left) and occlusion boundaries (right).

for low contrast region. To cope with this, we add uniform quantization noise
before quantizing the image. This way, each pixel has a chance of rounding up
proportional to its rounding residual (e.g ., if a pixel value is 102.3, it will have
30% chance of rounding up).

4 Results and Evaluations

In this section, we demonstrate the e↵ectiveness of our proposed network and
analyze its intermediate representation to shed some light on what it does.
We compare qualitatively and quantitatively with the state-of-the-art [1] and
show that our network performs better in many aspects. Finally, we discuss
limitations of our work. The video versions of these comparison are available in
our supplementary material.

4.1 Comparison with the State-of-the-Art

In this section, we compare our method with the state of the art. Because the
Riesz pyramid [6] gives similar results as the steerable pyramids [1], we focus
our comparison on the steerable pyramid. We perform both qualitative and
quantitative evaluation as follows. All results in this section were processed with
temporal filters unless otherwise noted.
Qualitative comparison Our method preserves edges well, and has less ringing
artifact. Fig. 5 shows a comparison of the balance and the baby sequences, which
are temporally filtered and magnified 10⇥ and 20⇥ respectively. The phase-based
method shows significant ringing artifact, while ours is nearly artifact-free. This
is because our representation is trained end-to-end from example motion, whereas
the phase-based method relies on hand-designed multi-scale representation, which
cannot handle strong edges well.

10 Authors Suppressed Due to Excessive Length

Ours with Static Mode Ours with Temporal Filter Phase-based with Temporal Filter [1]

Fig. 6. Temporal filter reduces artifacts. Our method benefits from applying tem-
poral filters (middle); blurring artifact is reduced. Nonetheless, even without temporal
filters (left), our method still preserves edges better than the phase-based method
(right), which shows severe ringing artifacts.

The e↵ect of temporal filters Our method was not trained using temporal
filters, so using the filters to select motion may lead to incorrect results. To
test this, we consider the guitar sequence, which shows strings vibrating at
di↵erent frequencies. Fig. 8 shows the 25⇥ magnification results on the guitar
sequence using di↵erent temporal filters. The strings were correctly selected by
each temporal filter, which shows that the temporal filters work correctly with
our representation.

Temporal processing can improve the quality of our result, because it prevents
our network from magnifying unwanted motion. Fig. 6 shows a comparison on
the drum sequence. The temporal filter reduces blurring artifact present when
we magnify using two frames (static mode). However, even without the use of
the temporal filter, our method still preserves edges well, and show no ringing
artifacts. In contrast, the phase-based method shows significant ringing artifacts
even when the temporal filter is applied.

Two-frames setting results Applying our network with two-frames input
corresponds best to its training. We consider magnifying consecutive frames using
our network (dynamic mode), and compare the result with those of Zhang et
al . [2]. Because their method is also based on the complex steerable pyramid [1],
their results are also prone to ringing artifacts and excessive blurring. Fig. 7 shows
the result of gun sequence, where we apply our network in the dynamic mode
without a temporal filter. As before, our result is nearly artifact free, while Zhang
et al . [2] su↵ers from ringing artifacts and blurring. Note that our magnification
factor in the dynamic mode may have a di↵erent meaning to that of [2], but we
found that for this particular sequence, using the same magnification factor (8⇥)
produces a magnified motion which has roughly the same size.

Quantitative Analysis. The strength of motion magnification techniques lies
in its ability to visualize sub-pixel motion at high magnification factors, while
being resilient to noise. To quantify these strengths and understand the limit
of our method, we quantitatively evaluate our method and compare it with the
phase-based method on various factors. We want to focus on comparing the
representation and not temporal processing, so we generate synthetic examples
whose motion is a single-frequency sinusoid and use a temporal filter that has

Learning-based Video Motion Magnification 11

Original Frame Ours (Dynamic Mode) Zhang et al. [2]

Fig. 7. Applying our network in 2-frame settings. We compare our network
applied in dynamic mode to acceleration magnification [2]. Because [2] is based on the
complex steerable pyramid, their result su↵ers from ringing artifacts and blurring.

0 50 100 150 200 250 300

frequency (Hz)

0

5

10

a
m

p
lit

u
d

e
 |
 F

(
)

|

6t
h

(E
):

80
 H

z
5t

h
(A

):
10

8
H
z

4t
h

(D
):

14
4

H
z

Input

72-92
Hz

100-125
Hz

125-175
Hz

Fig. 8. Temporal processing at di↵erent frequency bands. (left) Intensity signal
over the pixel on each string. (right) y-t plot of the result using di↵erent temporal filters.
Our representation is linear enough to be compatible with temporal filters, where the
strings from top to bottom correspond to the 6-th to 4-th strings. Each string vibrates
at di↵erent frequencies and each string is correctly selected by corresponding temporal
filters with appropriate passband. For visualization purpose, we invert the color of the
y-t slices.

wide passband.1 Because our network was trained without the temporal filter,
we test our method without the temporal filter, but we use temporal filters with
the phase-based method. We summarize the results in Fig. 9 and its parameter
ranges in the supplementary material.

For the subpixel motion test, we generate synthetic data having foreground
input motion ranging from 0.01 to 1 pixel. We vary the magnification factor ↵
such that the magnified motion is 10 pixels. No noise was added. Additionally, we
move the background for the same amount of motion but in a di↵erent direction
to all foreground objects. This ensures that no method could do well by simply
replicating the background.

1Our motion is 3Hz at 30 fps, and the temporal filter used is a 30-tap FIR with a
passband between 0.5 - 7.5Hz.

12 Authors Suppressed Due to Excessive Length

(a) Sub-pixel motion performance (b) Noise performance with small in-
put motion (0.05 px)

(c) Noise performance with large in-
put motion (5 px)

Fig. 9. Quantitative analysis. (a) Subpixel test, our network performs well down
to 0.01 pixels, and is consistently better than the phase-based [1]. (b,c) Noise tests at
di↵erent levels of input motion. Our network’s performance stays high and is consistently
better than the phase-based whose performance drops to the baseline level as the noise
factor exceeds 1. Our performance in (b) is worse than (c) because the motion is smaller,
which is expected because a smaller motion is harder to be distinguished from noise.

In the noise test, we fixed the amount of input motion and magnification
factor and added noise to the input frames. We do not move background in this
case. To simulate photon noise, we create a noise image IN whose variance equals
the value of each pixel in the original image. A multiplicative noise factor controls
the final strength of noise image to be added.

Because the magnified motion is not very large (10 pixels), the input and the
output magnified frames could be largely similar. We also calculate the SSIM
between the input and output frames as a baseline reference in addition to the
phase-based method.

In all tests, our method performs better than the phase-based method. As
Fig. 9-(a) shows, our sub-pixel performance remains high all the way down to
0.01 pixels, and it exceeds 1 standard deviation of the phase-based performance
as the motion increase above 0.02 pixels. Interestingly, despite being trained only
up to 100⇥ magnification, the network performs considerably well at the smallest
input motion (0.01), whose magnification factor reaches 1, 000⇥. This suggests
that our network are more limited by the amount of output motion it needs to
generate, rather than the magnification factors it was given.

Fig. 9-(b,c) show the test results under noisy conditions with di↵erent amounts
of input motion. In all cases, the performance of our method is consistently higher
than that of the phase-based method, which quickly drops to the level of the
baseline as the noise factor increase above 1.0. Comparing across di↵erent input
motion, our performance degrades faster as the input motion becomes smaller
(See Fig. 9-(b,c)). This is expected because when the motion is small, it becomes
harder to distinguish actual motion from noise. Some video outputs from these
tests are included in the supplementary material.

4.2 Visualizing Network Activation

Deep neural networks achieve high performance in a wide variety of vision tasks,
but their inner working is still largely unknown [27]. In this section, we analyze

Learning-based Video Motion Magnification 13

Gabor-like filters Laplacian-like filters Corner detector-like filters

Fig. 10. Approximate motion encoder kernel. We approximate our (non-linear)
spatial encoder as linear convolution kernels and show top-8 by approximation error.
These kernels resemble directional edge detector (left), Laplacian operator (middle),
and corner detector-like (right).

Original Frame 20⇥ 50⇥ 300⇥
Fig. 11. Temporal filtered result at high magnification. Our technique works
well with temporal filter only at lower magnification factors. The quality degrades as
the magnification factor increases beyond 20⇥.

our network to understand what it does, and show that it extracts relevant
information to the task.

We analyze the response of the encoder, by approximating it as a linear
system. We pass several test images through the encoder, and calculate the
average impulse responses across the images. Fig. 10 shows the samples of the
linear kernel approximation of the encoder. Many of these responses resemble
Gabor filters and Laplacian filters, which suggests that our network learns to
extract similar information as done by the complex steerable filters [1].

4.3 Limitations

While our network performs well in the 2-frame setting, its performance degrades
with temporal filters when the magnification factor is high and motion is small.
Fig. 11 shows an example frame of temporally-filtered magnified synthetic videos
with increasing the magnification factor. As the magnification factor increases,
blurring becomes prominent, and strong color artifact appears as the magnification
factor exceeds what the network was trained on.

In real videos, our method with temporal filter appears to be blind to small
motions. This results in patchy magnification where some patches get occasionally
magnified when their motions are large enough for the network to see. Fig. 12
shows our magnification results of the eye sequence compared to that of the
phase-based method [1]. Our magnification result shows little motion, except on
a few occasions, while the phase-based method reveals a richer motion of the iris.

14 Authors Suppressed Due to Excessive Length

Input

Ours with temporal filter

Phase-based [1]

Fig. 12. One of our failure cases. Our method is not fully compatible with the
temporal filter. This eye sequence has a small motion that requires a temporal filter
to extract. Our method is blind to this motion and produces a relatively still motion,
while the phase-based method is able to reveal it.

We expect to see some artifact on our network running with temporal filters,
because it was not what it was trained on. However, this limits its usefulness of
in cases where the temporal filter is essential to selecting small motion of interest.
Additionally, temporal filters are often useful in reducing noise, whose power
is often largely outside the frequency band of interest. Improving compatibility
with the temporal filter will be an important direction for future work.

5 Conclusion
Current motion magnification techniques are based on hand-designed filters,
and are prone to noise and excessive blurring. We present a new learning-based
motion magnification method that seeks to learn the filters directly from data.
We simplify training by using the two-frames input setting to make it tractable.
We generate a set of carefully designed synthetic data that captures aspects
of small motion well. Despite these simplifications, we show that our network
performs well, and has less edge artifact and better noise characteristics than the
state of the arts. Our method is compatible with temporal filters, and yielded
good results up to a moderate magnification factor. Improving compatibility with
temporal filters so that it works at higher magnification is an important direction
for future work.

References

1. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video
motion processing. ACM Trans. Graph. 32(4) (2013) 80

2. Zhang, Y., Pintea, S.L., van Gemert, J.C.: Video Acceleration Magnification. In:
IEEE Conf. on Comput. Vis. and Pattern Recognit. (2017)

3. Cha, Y.J., Chen, J., Büyüköztürk, O.: Output-only computer vision based damage
detection using phase-based optical flow and unscented kalman filters. Engineering
Structures 132 (2017) 300–313

4. Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in
video. In: IEEE Conf. on Comput. Vis. and Pattern Recognit. (2013) 3430–3437

Learning-based Video Motion Magnification 15

5. Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian
video magnification for revealing subtle changes in the world. ACM SIGGRAPH
31(4) (2012) 65–8

6. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Riesz pyramids for fast
phase-based video magnification. In: IEEE Int. Conf. on Comput. Photogr. (2014)

7. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans.
Pattern Anal. Mach. Intell. 13(9) (1991) 891–906

8. Liu, C., Torralba, A., Freeman, W.T., Durand, F., Adelson, E.H.: Motion magnifi-
cation. ACM Trans. Graph. 24(3) (2005) 519–526

9. Elgharib, M.A., Hefeeda, M., Durand, F., Freeman, W.T.: Video magnification in
presence of large motions. In: IEEE Conf. on Comput. Vis. and Pattern Recognit.
(2015)

10. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for
light field cameras. ACM SIGGRAPH Asia 35(6) (2016) 193–10

11. Wang, T., Zhu, J., Kalantari, N.K., Efros, A.A., Ramamoorthi, R.: Light field
video capture using a learning-based hybrid imaging system. ACM Trans. Graph.
36(4) (2017) 133:1–133:13

12. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video Frame Synthesis using
Deep Voxel Flow. In: IEEE Int. Conf. on Comput. Vis. (2017)

13. Niklaus, S., Mai, L., Liu, F.: Video Frame Interpolation via Adaptive Convolution.
IEEE Conf. on Comput. Vis. and Pattern Recognit. (2017)

14. Niklaus, S., Mai, L., Liu, F.: Video Frame Interpolation via Adaptive Separable
Convolution. In: IEEE Int. Conf. on Comput. Vis. (2017)

15. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. Int. Conf. on Learn. Representations (2016)

16. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using lstms. In: Int. Conf. on Mach. Learn. (2015)

17. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content
for natural video sequence prediction. In: Int. Conf. on Learn. Representations.
(2017)

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conf. on Comput. Vis. and Pattern Recognit. (2015)

19. Sajjadi, M.S., Schölkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution
through automated texture synthesis. IEEE Int. Conf. on Comput. Vis. (2017)

20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

21. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts.
Distill 1(10) (2016) e3

22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: Eur. Conf. on Comput. Vis., Springer (2016) 694–711

23. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. IEEE Conf. on Comput. Vis. and Pattern Recognit.
(2017)

24. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

25. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. Int. J. of Comput. Vis. 88(2) (June
2010) 303–338

16 Authors Suppressed Due to Excessive Length

26. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Eur. Conf. on
Comput. Vis., Springer (2014) 740–755

27. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quanti-
fying interpretability of deep visual representations. In: IEEE Conf. on Comput.
Vis. and Pattern Recognit. (2017)

28. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams,
A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays.
In: ACM Transactions on Graphics (TOG). Volume 24., ACM (2005) 765–776

Supplementary Material:
Learning-based Video Motion Magnification

Tae-Hyun Oh1,⇤ Ronnachai Jaroensri1,⇤ Changil Kim1 Mohamed Elgharib2

Frédo Durand1 William T. Freeman1,3 Wojciech Matusik1

1MIT CSAIL, Cambridge, MA, USA
2HBKU QCRI, Doha, Qatar

3Google Research

Summary of Contents

This is a part of the supplementary material. The contents of this supplementary
material include the additional experiment results with descriptions and parameter
setups, which have not been shown in the main paper due to the space limit.

The accompanied supplementary video contains comparisons with other
methods [5,1,6,2] and baselines, self-evaluations and other applications.

A.1 Parameters for Example Videos

In Table A.1, we specify parameters used in the experiments of the main paper
such as magnification factors, and temporal filters. The parameters of examples
in the supplementary video are self-contained if specified. For FIR filter, we chose
the number of taps equal to the number of video frames in that sequence, and
apply the filter in the frequency domain. For all other filters, we apply them in
the time domain.

A.2 Additional Experiments

This section describes the detail description of the dataset (in Sec. A.2.1), and
presents additional results. We present an example for the characteristics of
Static mode that magnifies broad frequency bands in Sec. A.2.2, qualitative
comparison in Sec. A.2.3, quantitative analysis in Sec. A.2.4, visualization analysis
examples in Sec. A.2.5, descriptions for other applications in Sec. A.2.6 and the
supplementary video content in Sec. A.2.7.

A.2.1 Detail dataset Information.

In the synthetic training data generation, we use two datasets: the MS COCO [26],
and the PASCAL VOC segmentation dataset [25]. The license conditions are

⇤indicates equal contributions.

18 Authors Suppressed Due to Excessive Length

Sequence
Name

Magnification
Factor

Temporal
Band

Sampling Rate
(fps)

Temporal Fil-
ter

crane 75⇥ 0.2 � 0.25 Hz 24 FIR

balance 10⇥ 1 � 8 Hz 300
2nd order Butter-
worth

throat 100⇥ 90 � 110 Hz 1900 FIR

baby 20⇥ See Temporal
Filter Column

30
Di↵erence of IIR,
same as [6]

tree (high freq
band)

25⇥ 1.5 � 2 Hz 60 FIR

tree (low freq
band)

25⇥ 0.5 � 1 Hz 60 FIR

camera 75⇥ 36 � 62 Hz 300
2nd order Butter-
worth

eye 75⇥ 30 � 50 Hz 500 FIR
gun 8⇥ N/A N/A Dynamic Mode
cat-toy 7⇥ N/A N/A Dynamic Mode
drone 10⇥ N/A N/A Dynamic Mode
hot-co↵ee 3⇥ N/A N/A Dynamic Mode
drum 10⇥ 74 � 78 Hz 1900 FIR
drum 10⇥ N/A N/A Static Mode

guitar 25⇥ 72 � 92 Hz 600
2nd order Butter-
worth

guitar 10⇥ N/A N/A Static Mode

Table A.1. Parameters of our results

as follows: the annotations and images of the MS COCO are under Creative
Commons Attribution 4.0 license and Flickr terms of use, respectively, and the
PASCAL VOC is under Flickr terms of use and MSR Cambridge License (RTF).

All the real video examples used for comparisons come from either [5,6,1,9,2],
otherwise our own captured data is used.

A.2.2 Comparison of temporal operations

Our network is trained on the two frames setting, but we also have shown that
multi-frame linear temporal filtering is compatible to some extent. We discuss the
di↵erence of temporal operation characteristics for a reference purpose. Fig. A.1
shows the frequency response characteristics of di↵erent temporal operations.

Also, as shown in Fig. A.1, the area-under-covers of (a) are far broader than
(b), i.e., these modes magnify broader frequency ranges comparing to band-pass
filtering in (b). This implies as follows. First, as the same amount of magnification
factors are increased, overall energy increment of ours is even larger than the
previous work; hence, the magnification factors are not directly comparable
across modes, and this fact needs to be taken into account when the results
are compared. Second, since noise (high) frequency band is also involved in, the
training and working on the regime (a) would require more robust representation
and synthesis power than the regime (b); thus, utilizing only two frames is much

Learning-based Video Motion Magnification 19

0 50 100 150 200 250

Frequency (Hz)

-10

-5

0

lo
g

(|
F

(
)|

)

Dyn. mode

Static mode

0 50 100 150 200 250

Frequency (Hz)

-10

-5

0

lo
g

(|
F

(
)|

)

cran

throat

woman1

woman2

tree1

tree2

camera

guitar

≈ 430 frm.

(a) (b) (c)

Fig. A.1. Comparison on temporal operators. The plots visualize log frequency
responses of the subtraction operation for Static and Dynamic modes (a) and temporal
filter examples (b) used in [5,1,6]. (c) temporal domain visualization of a low-freq.
band-pass filter example (sampling rate: 60Hz, cut-o↵: [0.35, 0.71]Hz) used in [1], where
the filter lies across near 450 frames. For visual comparison purpose, the frequency
domain range is resampled to have the same range comparable between (a) and (b).

challenging regimes. For temporal filtering, magnifying a low-frequency band
needs to take into account a long history of frames as shown in Fig. A.1-(c), while
given an anchor frame, Static mode can magnify broad ranges of motion only
with two frames, which is memory e�cient.

We note that the subtraction operation at test phase is not claimed as the
best, but they have trade-o↵s. The multi-frame based temporal filtering [5,1] has
its own merits: selectivity of a frequency band of interest, and noise frequency
band suppression as shown in Fig. A.1-(b). Since our network is trained only
on (a), it is hard to expect any generalization for other temporal operations.
Surprisingly, at test stage, we observed that our representation works favorably
well with replacing the subtraction operation in the manipulator by the temporal
filtering. Thus, we also conduct experiments with the subtraction operation to
assess and compare the performance of our representation with the competing
ones, i.e., phase representations from complex steerable filters [1] and Riesz
transformation [6] (see the supplementary video). Also, we compare our method
with the competing methods equipped with temporal filtering.

Fig. A.2 shows its example that Static mode with our method magnifies the
motion of all three strings whose frequencies are di↵erent. This shows that our
method magnifies true motions, but not hallucinating.

A.2.3 Additional qualitative Comparisons.

Various qualitative results can be found in the supplementary video. Due to the
characteristic of the problem, we strongly recommend to refer to the supplementary
video for complete comparison and evaluation.

We also present another comparison with other methods in Fig. A.3, where
we replace the all the temporal operation to be Dynamic mode, so that we can
compare the capability of the representation and synthesis of each method under
the same setting.

A.2.4 Additional Quantitative Comparisons.

We summarize the test parameters used in all quantitative results in Table A.2.
In Fig. A.4, we show additional quantitative evaluations for completeness: noise

20 Authors Suppressed Due to Excessive Length

0 50 100 150 200 250 300

frequency (Hz)

0

5

10

a
m

p
lit

u
d

e
 |
 F

(
)

|

6t
h

(E
):

80
 H

z
5t

h
(A

):
10

8
H
z

4t
h

(D
):

14
4

H
z

𝑥

𝑡

0 50 100 150 200 250 300

frequency (Hz)

0

5

10

15

20

a
m

p
lit

u
d

e
 |
 F

(
)

|

6th (E
): 8

0 Hz5th (A
): 1

08 Hz

4th (D
): 1

44 Hz

Fig. A.2. Broad frequency magnification (Guitar sequence). The Static mode
with our method does not alter input frequency, as well as magnifies overall the frequency.
The estimated frequencies of 4, 5, 6-th strings are {137.14, 109.10, 80}-Hz, which is very
close values to ideal frequencies, {144, 108, 80}-Hz. Color lines on the slice view are the
samples of the period measure to estimate frequency.

Table A.2. Summary of parameter for each quantitative test.

Param.
Test Magnification Factor Motion (px.) Magnified Motion (px.) Noise Background Motion

Sub-pixel Capped at 100 0.01 - 1 Capped at 10 No Yes

Noise 5.0 2.0 10.0 0.01 - 100 No

Noise on Real Image 2.0 (estimate) - - 0.01 - 100 No

Magnification Factor 1 - 1,000 0.01 - 2.0 Capped at 10 No Yes

Input Motion Capped at 5.0 1 - 10 Capped at 10 No Yes

Magnified Motion Capped at 5.0 1 - 10 1 - 30 No Yes

performance on real data and input motion range test. To test the noise perfor-
mance on real examples in (a), we grab three consecutive frames from 17 high
speed videos, and approximate their motions as linear. That is, the third frame
will have twice the amount of motion as the second frame. We synthetically add
noise as described before.

A.2.5 Additional Network Visualization for Analysis

In Fig. A.5-(b–e), we compare the activations of the compensation part, i.e.,
h(↵(g(A2 � A1)), with two di↵erent magnification factors ↵ for the same input
motion. It shows that, according to ↵, the compensation not only scales activations
but also spatially propagates around. This suggests that our representation acts
as a proxy of motion information that is able to be interpreted and manipulated.
Lastly, observing activations of the compensation part in Fig. A.5 and the fusion
layer in Fig. A.6, the network seems to learn how to compensate discrepancy
introduced by motion manipulation, rather than explicitly moving pixels. These
suggest that our method learns a representation closely related to Eulerian motion
representation rather than Lagrangian one.

Learning-based Video Motion Magnification 21

(b)

(c)

(d)

(e)

(a)

Fig. A.3. Slice view comparison with other methods, Dynamic mode. We com-
pare original inputs (a) for reference, Wadhwa et al . [1] (b), Wadhwa et al . [6] (c),
Zhang et al . [2] (d) and the proposed method (e). Even though there are large transla-
tional motions, only our method shows clear boundaries with proper magnified motion
in slice view, while the other methods have blurry textures due to artifacts.

22 Authors Suppressed Due to Excessive Length

(a) Noise performance in real images
(b) Input motion test. Because magnified motion is
capped at 10px, magnification factor approaches 1
towards the end, which explain the performance.

Fig. A.4. Additional Quantitative Analysis.

(a) Unit A Unit B
(b) ↵=2 (c) ↵=5 (d) ↵=2 (e) ↵=5

Fig. A.5. Visualization of activations at Probe pt. B in Fig. 2, i.e., h(↵(g(A2�
A1)). (a) Example input, where the arrows indicate the motion directions of each shape
objects. Comparing (b,d) to (c,e), as the magnification factors are increased, the
manipulator layer not only increases the scale of activation, but also propagates the
activation around. In this regard, our network seems to learn how to compensate object
movements according to resulting motion.

(a) Unit02 (b) Unit13 (c) Unit19 (d) Decoded

Fig. A.6. Visualization of activations at Fusion layer in Fig. 2. We show ran-
domly sampled activations fused from visual and motion compensated representations.
The representations and decoded frame show that our network compensates discrepancy
induced by motion magnification visually, rather than explicit pixel movement. It shows
a color synthesis behavior of our network in (d). Around the yellow ellipse in (d), the
color values seem to be synthesized to compensate movements in a similar way to
inpainting.

Learning-based Video Motion Magnification 23

A.2.6 Applications

To show the versatility of our learned motion representation, we additionally
present potential applications, view/frame interpolation. Note that we directly
use the network trained on our synthetic data for motion magnification, and we
have never re-trained or fine-tuned the network for the specific applications. The
results can be found in the supplementary video.

For the view/frame interpolation applications, we use our network to generate
intermediate frames between two input frames by changing magnification factor
in a range of [0,1]. For the view interpolation example, we generate and insert 25
intermediate frames given two input images. For the frame interpolation example,
we generate five frames between every two consecutive frames, i.e., 5⇥ temporal
interpolation. We use the light field camera dataset [28] in these applications.

A.2.7 Supplementary Video Content

The content summary of the supplementary video is as follows:

– Qualitative comparison with temporal filter
– Qualitative comparison in 2 frame input setting (static mode, dynamic mode,

frequency characteristics comparison)
– Additional analysis
– Applying di↵erent magnification factors without re-training (including motion

attenuation examples)
– Applications: View/Frame interpolation.

