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Figure 1: Our new stochastic finite element method uses sampled rigid body trajectories (left) to predict the failure modes of objects under
real-world circumstances (middle). We tested our method on more than 30 3D printed models (right) and found that our algorithm predicted
over 90% of observed failures.

Abstract

In this paper we propose failure probabilities as a semantically and
mechanically meaningful measure of object fragility. We present a
stochastic finite element method which exploits fast rigid body sim-
ulation and reduced-space approaches to compute spatially varying
failure probabilities. We use an explicit rigid body simulation to em-
ulate the real-world loading conditions an object might experience,
including persistent and transient frictional contact, while allowing
us to combine several such scenarios together. Thus, our estimates
better reflect real-world failure modes than previous methods. We
validate our results using a series of real-world tests. Finally, we
show how to embed failure probabilities into a stress constrained
topology optimization which we use to design objects such as weight
bearing brackets and robust 3D printable objects.

Keywords: structural analysis, computational design, FEM

Concepts: •Computing methodologies→ Modeling and Simu-
lation; Uncertainty Quantification;

1 Introduction

Every designer must master the art of compromise. Whether de-
signing a child’s toy or a bridge, one must balance usability and
reliability with aesthetic considerations. For instance, a designer
may reinforce a toy so that it can survive a fall from a child’s hand,
but may not be willing to sacrifice the design aesthetics to allow the
toy to survive being deliberately thrown to the ground. For a real-
world bridge, a designer may make the opposite choice – sacrificing
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the design for sturdiness in all scenarios. What becomes clear is that
the susceptibility of an object, or its various parts, to failure depends
on the “typical” use cases of the object. For instance, a delicate
internal part of a toy may not be so vulnerable if it is protected by
other protrusions. In this paper, we explore the use of probability of
failure as a semantically and computationally meaningful measure
of reliability, and a compact tool for encoding aggregate object be-
havior over a range of real-world scenarios. We use this probabilistic
formulation of object failure for both forward analysis tasks and
robust inverse computational design.

The primary computational technique for failure analysis of solid
structures is the finite element method [Belytschko et al. 2013],
which allows for large-scale analysis of complicated structures and
materials. Of particular interest to us are so-called “worst-case”
methods [Stava et al. 2012; Zhou et al. 2013] which attempt to
identify the most flimsy parts of a design so that users can modify
them. These methods suffer from at least one of two fundamental
limitations. The first is that presenting mechanical stress, or arbi-
trary, spatially varying weakness ratings to a designer is nonintuitive.
Without further understanding of structural mechanics, the designer
cannot reliably interpret how often these stresses/weak components
will lead to breakage. This means the designer cannot fully under-
stand whether he should compromise the aesthetic of the object in
search of reliability. Second, the “worst-case” scenario, the one in
which the object fails most easily, may never be encountered during
real-world usage of the object. Thus, designing to account for these
can lead to ‘over-engineering’ that costs time and money, and can
sacrifice the design aesthetics.

In contrast to these methods, we use techniques from stochastic fi-
nite element analysis to compute the spatially varying probability of
failure from simulations of an object’s real-world usage. Stochastic
finite element methods (SFEM) are an extension of standard finite
elements which deal with force distributions rather than single in-
stances of an applied force. Thus, to use SFEM, we need a method
for generating realistic force distributions and to study their effect
on an object. Our method is the first to use an external physics
simulation to estimate real world loading conditions for an object.

Given a 3D object, we use a fast rigid-body physics engine to gen-
erate contact force samples on its surface. Rather than perform
finite element analysis on all samples, we use randomized singular
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Figure 2: A comparison between worst-case structural analysis (top
left) and our method (top right) for a star geometry falling to the
ground. Worst-case analysis [Zhou et al. 2013] incorrectly predicts
interior struts as being weak while also failing to predict that the
corners of the star may break. Our method avoids both these faults
and agrees more closely with the results of a real-life drop tests (as
seen at the bottom).

value decomposition in the contact sample space to derive a low-
dimensional, reduced force-space. This accelerates our computation
of object stress samples from our contact samples by approximately
100×. With these stress samples we can compute the failure prob-
ability density function, which gives us the probability that the
maximum stress experienced by an object will exceed a given thresh-
old. We do this without resorting to coupled spatial-probability
discretizations common to other perturbation-based stochastic finite
element schemes [Stefanou 2009].

Our probability of failure measure is easy to understand. For in-
stance, a toy that will survive 99% of its interactions with the world
can be considered robust. Using probability also allows designers to
make more informed design decisions, and avoids over-engineering
by ensuring that virtual testing matches real-world usage. Figure 2
illustrates the difference by comparing our method to worst-case
structural analysis [Zhou et al. 2013]. First, our method produces
meaningful failure probability maps. Second, our use of real world
scenarios avoids errors such as labeling interior struts as vulnera-
ble, and correctly predicting that the corners of the object will chip.
Finally, unlike previous methods, our probabilities are comparable
between objects and thus induce a reliability ordering over sets of de-
signs. This allows a designer to evaluate a particular design relative
to others.

We apply our new method to both forward analysis and inverse de-
sign problems. In forward design, we make similar assumptions to
previous work, that the object only deforms infinitesimally (larger
deformations cause breakage), and focus our analysis on stiff materi-
als such as ABS plastic. The input to the forward design problem is
a 3D surface mesh with volumetric material assignments, as well as
a definition of the typical usage scenario for the object. The outputs
of our method are a map of the spatially varying probabilities for
fracture, and a total probability of object fracture (under the given us-
age). This map can be used by designers and engineers to manually
modify and reinforce their designs. Figure 1 shows the basic stages
of our algorithm along with a sample of our virtual and fabricated
results.

Solving the inverse design problem requires not only predicting the
likelihood of object fracture, but also using computation to automat-
ically correct design flaws. In this paper we also illustrate the use
of our stochastic finite element method to perform robust topology
optimization. The input to the inverse problem are: a 3D mesh with
a volumetric material assignment, the typical usage scenario, as well
as a minimum fracture probability. Our method automatically tries
to reduce the weight of the object, while guaranteeing the object’s
probability of breaking is always less than the specified input value.
To facilitate this, we derive efficient formulas for computing the gra-
dient of our failure probabilities. This allows us to use well-tested,
continuous optimization schemes. We demonstrate the algorithm by
designing optimized weight bearing brackets and other robust, 3D
printable objects.

Our paper makes the following technical contributions:

• An efficient stochastic finite element method which can derive
compact force distributions from external simulations or data,

• a reduced-space approach that accelerates the computation of
object failure probabilities,

• a topology optimization formulation using the above numerical
method,

• a fast method for evaluating the gradients of the stochastic
design problem, allowing the use of efficient continuous opti-
mization methods,

• application of the method to structural failure prediction and
automatic design reinforcement.

The remainder of this paper outlines our approach to the stochastic
finite element method as well as describes the efficient implemen-
tation of both the forward stochastic simulation and several inverse
design problems. Armed with these tools we show several virtual
and fabricated examples that illustrate the ability of our method to
tackle the inherent unpredictably of context-aware structural analy-
sis.

2 Related Work

If one is to build anything, it is critical to know whether or not it will
fall apart. It is for this reason that structural analysis of elastica has
been extensively studied. In the late 19th and early 20th centuries,
Antoni Gaudi used a hanging chain model [Tomlow 1989] to ensure
the cathedrals he was designing would stay upright. In a similar
vein engineers and mathematicians have studied the rigidity and
stability of truss and beam structures in attempts to ensure their
reliability [Crapo 1979; McCormac and Elling 1984; Crapo and
Whiteley 1989]. For more complicated, multi-material objects, the
go-to technique for structural analysis is the finite element method
(FEM) [Hughes 2012; Belytschko et al. 2013] which has been used to
study everything from cracks in beams [Gounaris and Dimarogonas
1988] to human beings [Melosh 1974].

In a similar vein, the fabrication sub-field of computer graph-
ics [Prévost et al. 2013; Bächer et al. 2014; Musialski et al. 2015;
Musialski et al. 2016] has also dealt with preventing fabricated
objects from failing. Zhou et al. [2013] present a method for per-
forming “worst-case” structural analysis, in which they compute
a contact pressure field which produces the worst possible stress
distribution within an object. They use this to produce a scaled
“weakness“ map which indicates areas of likely failure. As illus-
trated in Figure 2, such a method can sometimes generate unrealistic
stress distributions and erroneously predict areas of failure. Umetani
and Schmidt [2013] use a simplified beam model which allows for
fast computation of structural weakness. These methods all suffer
from the same limitations. First, they produce arbitrary weakness
maps which are not semantically meaningful – they do not quali-
tatively demonstrate how fragile one design is when compared to
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another. Second, the analysis is performed without any regard for
how the object will interact with the world. The notion of weakness
is different for a child’s toy than it is for the landing gear of a Jumbo
Jet. We believe that context is important and that structural analysis
methods should take it into account.

Injecting context into standard analysis methods can be difficult.
Stava et al [2012] make some progress in this direction by perform-
ing structural analysis for a limited set of cases, load under gravity
and a two fingered pinch but we seek a more general solution. This
is the raison-d’etre of the Stochastic Finite Element Method (SFEM).
These method are a relatively recent invention of the engineering
community which are receiving much attention [Ma 1987; Der Ki-
ureghian and Ke 1987; Ang and Tang 2007] (see Stefanou [2009]
for a review).

The standard SFEM problem is to determine the response of an
object with stochastic material properties to an applied load. SFEM
has a long history in engineering [Liu et al. 1986b; Mahadevan and
Haldar 1991; Matthies and Keese 2005], and there are two major
approaches for such a problem: Monte Carlo [Schuller 2006] and
Perturbation Methods [Liu et al. 1986a]. Monte Carlo methods
sample the material property space, instantiating a large number of
deterministic FEM matrices and solving them, while Perturbation
methods use a local expansion around the mean of the material prop-
erties to arrive at a large system of equations that can be solved to
yield the stochastic response. Both methods are performance inten-
sive, Monte Carlo methods require solving a huge number of finite
element systems while Perturbation Methods give rise to huge linear
systems which must be inverted [Eiermann et al. 2007]. Perturbation
methods can also yield inaccurate responses when variance in forces
is high [Liu et al. 1986a], as such, Monte Carlo methods are often
used as the gold-standard comparison [Stefanou 2009].

In this work we solve a different problem. We assume the material
properties of our object are fixed while the applied load is stochas-
tic and of unknown variance. Specifically, we concern ourselves
with the non-trivial interaction of linearly elastic, infinitesimally
deforming objects with the world, including persistent and transient
frictional contact. We exploit fast rigid body simulation [Coumans
et al. 2015] to build an efficient Monte Carlo method for reliability
analysis under these conditions. Contact problems are relatively un-
explored in the SFEM literature and previous work tends to rely on
highly specialized models for specific scenarios [Faravelli and Bigi
1990]. This is quite different from our general approach. Our method
also shares similarities with the Response Surface Method [Zhang
et al. 2014]; however rather than compute the surface as an inter-
mediate step, we directly compute object failure probabilities from
our contact force samples. Our major contribution is speeding up
Monte Carlo based approaches for stochastic analysis by an order of
magnitude.

Stochastic finite elements can also be used to solve optimization
problems. In this work we focus on the topology optimization prob-
lem, wherein the topology of an object is optimized to meet certain
requirements [Bendsøe and Sigmund 2009]. Most topology opti-
mization problems attempt to minimize the compliance of an object
given a certain amount of material [Sigmund 1997], such problems
have recently been explored in computer graphics as well [Wang
et al. 2013; Lu et al. 2014; Dumas et al. 2015; Martı́nez et al. 2015].
Minimum compliance, however, cannot tell us whether an object
will fail or not – such an outcome is determined by the internal
stresses developed under load. Instead, we solve a stochastic variant
of the stress constrained topology optimization problem ([Lee et al.
2012]) wherein one attempts to minimize the weight of an object
subject to a constraint on the yield stress. While stochastic topology
optimization is quite new there has been much work done in the
engineering community [Chen et al. 2010; Evgrafov et al. 2003;

Maute 2014]. The key difference between this work and our own
is twofold; first, unlike previous approaches we optimize for the
structure of an object given a constraint on its probability of failure.
Second, we propose a fast, PCA-based, Monte Carlo sampling ap-
proach that allows us to perform this optimization efficiently, under
complicated loading conditions (such as contact forces) generated
by an external simulator.

3 Background on Structural Analysis

Notation. Here, we briefly outline the notational conventions fol-
lowed in this work. We express scalar variables and functions as
lower-case letters (f ), vector-valued ones as lower-case, boldfaced
letters (v) and those that are matrix-valued as upper-case letters (A).
When necessary to denote a specific entry in a vector, or a column
of a matrix we use a lower-right subscript (vj indicates the jth com-
ponent of vector v while Aj denotes the jth column of matrix A).
The discussion of finite element techniques requires that we have
the ability to discuss certain properties in global (whole-object) or
per-element scope. We use a superscript e to denote that a particular
property is being used in a per-element fashion (i.e v is a vector
associated with the whole-object while ve is the component of that
vector associated with the eth element). This per-element notation
applies to functions as well, that is, if function fe (·) computes a
per-element scalar quantity, then f (·) returns a vector wherein the
eth component contains the value fe (·). Finally, the description of
our algorithm necessitates that we reference per-sample quantities.
We reserve the index i to represent the ith sample and place it as a
left hand superscript (i.e. if is a vector, f , associated with the ith

sample).

The Finite Element Method. At the heart of our approach lies
the finite element method (FEM) for linearly elastic objects. FEM
allows us to compute the stresses induced on an object by the applied
forces. Briefly, the finite element method begins by discretizing an
object using a computational mesh of simple volumetric cells. In
our case we rely on a hexahedral, embedded FEM which divides
our object into a number of axis-aligned hexahedra. The static
equilibrium conditions which result from this discretization are

Ku = f , (1)

where K ∈ R3n×3n is the stiffness matrix, n is the number of
vertices in the computational mesh, u ∈ R3n are the nodal displace-
ments and f ∈ R3n are the applied external forces.

Crucial to computing whether or not an object will break is the
ability to compute the internal stresses acting on the object. These
stresses are given by the simple formula

σ = CBu, (2)

where σ ∈ R6m is a vector of object’s Cauchy stresses, C ∈
R6m×m is the constitutive matrix (determined by the material cho-
sen), m is the number of elements in the computational grid and
B ∈ Rm×3n computes the Cauchy strain from the nodal displace-
ments u = K−1f .

Detecting Failure using Yield Stresses. We detect object fail-
ure on a per-element level, by investigating the per-element stress
(σe), which is a 6D vector that can be extracted from the global
stress vector σ. An object fractures when any per-element stress
passes outside of a “yield surface” in the 6-dimensional stress space.
For many applications one can use a simplified yield surface which
is based on computing the von Mises stress. The von Mises stress is
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Figure 3: Solving for failure probabilities begins with the use of a rigid body simulator to compute inertial and contact force distributions.
Randomized SVD is used to find a reduced space which accounts for 95% of the force variance. This reduced space is used to accelerate
Stochastic Finite Element analysis which yields both spatially varying and per-object failure probabilities. Here we see that this plane can land
without incident under normal circumstances.

a function of σe and is given by

σ̃e (σe) =
1

2

[
(σe1 − σe2)2 + (σe2 − σe3)2 + (σe3 − σe1)2]+

3(σe 2
4 + σe 2

5 + σe 2
6 ),

(3)

We decorate the von Mises stress with a buckling bar since it is a
scalar measure of total element deformation. For any material there
is a scalar threshold stress σ̂, called the yield stress. If the von Mises
stress exceeds the yield stress σ̃e (σe) > σ̂, the element (and thus
the object) will fracture – indicated by the “broken” bar above the
stress sign. The von Mises stress has been shown experimentally
to be a good predictor of fracture. This, coupled with its straight-
forward formulation, makes it ideal for use in our stochastic finite
element method.

Stochastic Finite Elements. On the surface, stochastic FEM is
a simple modification to the standard version defined by Equation 1
wherein the deterministic variables u and f are replaced by random
variables. This allows us to study the behavior of a mechanical
system in a probabilistic way, computing expected displacements,
variances, and most important for us, the probability of certain events
such as fracture. In the next section, we will outline how exactly we
use the stochastic FEM formalism to compute these probabilities.

4 Fracture Probabilities using
Stochastic Finite Elements Method

Our method for computing fracture probabilities takes as input a
3D triangle mesh with associated volumetric material assignment,
and the usage scenario for the object. It generates, as output, both
per-element fracture probabilities and the probability of fracture
for the entire object (Figure 3). Computing fracture probabilities
proceeds in five stages:

1. Generate a force distribution using an external simulator (Sec-
tion 4.1).

2. Compute per-element stress distributions from force distribu-
tions (Section 4.2).

3. Convert per-element von Mises stress distributions into the
1-dimensional probability of maximum stress experienced by
the entire object (Section 4.3).

4. Compute the cumulative distribution function (CDF) of the
maximum stress distribution (Section 4.4).

5. Compute the probability that the stress will exceed the yield
stress using the CDF.

In the next sections we explore each of these stages in detail.

4.1 Generating Force Distributions

Our algorithm uses an off-the-shelf rigid body simulator [Coumans
et al. 2015] to generate force distributions from simulations of an
object in the real world. We make two assumptions that allow us
to generate force distributions in this way. First, we assume that
our object only deforms infinitesimally. This means that we do
not need to update the object’s geometry as it moves through the
world. Second, we assume that the object instantaneously returns
to its undeformed state after a force is applied (as is common for
many relatively stiff materials such as wood, ABS plastic and metal).
This means that we can assume our object’s geometry and inertial
properties are fixed over time and thus it can be simulated as a rigid
body. We regard our rigid body simulator as a blackbox function

F = S (φ0) , (4)

whereF is a random vector representing the force distribution gener-
ated by simulating initial conditions represented by a second random
variable φ0, a random 12-vector which stores the body’s center-of-
mass position and orientation in the world space, as well as its linear
and angular velocities (each represented by 3 scalar values).

We represent this distribution as a matrix of force samples F rigid

where each column, F rigidi is a single force sample generated by a
single initial condition sampled from φ0. Concretely each column
of F rigid has the following form:

F rigidi =



ifc1
...

ifcs

ifCOM
iτCOM


, (5)

where ifck ∈ R3 is a contact force sample acting on the surface of
the object (we use the surface of our finite element simulation mesh),
s is the total number of surface points, ifCOM ∈ R3 is the inertial
force acting on the object’s center of mass and iτCOM is the inertial
torque acting on the object’s center of mass. Our matrix, F rigid,
consists of Ns of these columns, where Ns is the total number of
force samples.

Simulating a single rigid body is fast, and creating samples for φ0 is
embarrassingly parallel, thus we can very quickly generate thousands
of force samples. Furthermore, since contact forces tend to be
sparsely located over the surface of the object, we can efficiently
store this data which we use in subsequent steps to predict fracture
probability.
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Figure 4: We encode context into our analysis by using a rigid body
simulator to generate a large number of force samples from user
supplied scenarios. Here we show the four scenarios used in our
paper, the Drop Test (A), Plane Landing (B), Stairs Fall (C) and
Two-Object Collision (D).

4.1.1 Scenarios for Context-Aware Analysis

Altering the initial conditions (φ0) allows us to encode real-world
context into our algorithm. In this paper we explore four different
scenarios with varying degrees of complexity (Figure 4), they are

1. Drop Test: A single, randomly oriented object is dropped from
a randomly determined height onto flat ground.

2. Plane Landing: A randomly oriented object is is thrown to-
wards the ground at a shallow, but randomly generated, angle
of descent.

3. Stair Fall: A randomly oriented object is dropped down a set
of stairs from a randomly determined height.

4. Two-Object Collision: Two randomly oriented objects are col-
lided ”head on” at randomly determined velocities.

Table 1 gives parameters for all scenarios. Additional scenarios can
be designed either by hand or using real-world data and seamlessly
used with our algorithm.

4.2 Per-Element Stress Distribution

Equipped with our force samples, F , we can now attempt to con-
vert them into a set of per-element stress samples. Naively this
would involve solving Equation 1 for each of our force samples, an
approach that is clearly computationally intractable. Instead, we
propose to learn a reduced basis which represents our force samples.
This significantly reduces the number of linear solves required by
our algorithm. Note that our approach differs significantly from
previous efforts which perform model reduction [Barbič and James
2005] on the object geometry, thus potentially losing the ability to
capture the extremely local nature of the contact-induced deforma-
tion. Our method exploits the fact that forces are generated from
a relatively low dimensional space of initial conditions, leading to
efficient reduced space representations.

To map our contact force samples from a rigid body representation
to our finite element mesh we use the projection operator J , a matrix
of size 3n× (3s+ 6) given by

J =
[
Jc Jcom Jτ

]
, (6)

where Jc ∈ R3n×3s, Jcom ∈ R3n×3 and Jτ ∈ R3n×3. Here Jc
maps surface degrees of freedom to full volume degrees of freedom,
while JTcom and JTτ are matrix operators which compute the linear
and angular velocities at the center of mass of our finite element
mesh (e.g. vcom = JTcomv and vτ = JTτ v where v is an arbitrary
vector of nodal velocities on the FEM mesh). This gives us a finite
element force sample matrix F = JF rigid

We use randomized singular value decomposition (SVD) [Halko
et al. 2011] to perform principal component analysis on F to create
a reduced space. However, performing the SVD on this matrix,
of size 3n ×Ns (where Ns is the total number of force samples),
would be prohibitively slow. We accelerate this procedure using
the QR decomposition of J which yields Q ∈ R3n×(3s+6) and
R ∈ R(3s+6)×(3s+6) where (3s + 6) � 3n. This can be com-
puted quickly due to the “tall and thin” shape of J . Using the QR
decomposition we can write

F = JF rigid = QRF rigid = QU ′SV T = USV T , (7)

where U ′, V and S are the singular vectors and singular values of
RF and U are the right singular vectors of JF rigid. This follows
from the orthogonality of bothQ andU ′. Therefore, we can compute
the principal components of F by performing an SVD on the much
smaller matrix RF rigid which reduces computation time. Figure 5
shows both some sample basis vectors from a horse Drop Test as
well as a comparison of original samples and their reconstructions in
the reduced space. While not exact, our reduced space approximates
the locality of the applied contact samples, their applied direction,
and their magnitudes well.

Figure 5: Top Row: Six (of 108) basis vectors computed for a
Drop Tested horse. Note that our basis vectors consist of sparse
collections of contact forces (zoom in). Bottom Row: Comparison
of original force samples to their reconstructions in the basis. Here
we focus only on the contact area, forces are zero elsewhere in both
the original sample and its reduced representation. Colors represent
the x (red), y (green) and z (blue) components of the applied force.

The mean sample vector and the principal components form a re-
duced basis for our finite element force samples, denoted F̄ . We
can then represent the ith force sample as F̄ iα where iα = F̄TFi.
This, in combination with Equation 2, allows us to represent the ith
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Scenario Position Velocity
Center-of-Mass Orientation Linear Anglular

Drop Test (0, 1.5m, 0)± (0, 0.2m, 0) Uniform (0, 0.2m/s, 0)± (0, 0.05m/s, 0) 0.4± 0.2

Plane Landing 0.5m along plane heading Pitch: 30◦ ± 10◦

Roll: 0◦ ± 20◦
7m/s± 2m/s along plane heading 0.0

Stair Fall (0, 1.5m, 0)± (0, 0.2m, 0) Uniform (0, 0.2m/s, 0)± (0, 0.05m/s, 0) 0.4± 0.2
Collision Objects start 1m apart Uniform 5m/s± 2m/s in direction of other object 3.0± 1

Table 1: Definitions of our four testing scenarios. For random variables, we sample from Gaussian distributions unless otherwise specified.
per-element stress sample

iσ = CBK−1F̄ iα, (8)

wherein we immediately observe that all stress samples can be
computed using a number of linear solves equal to the number of
columns in F̄ – a significant improvement over the naive solution.
In our algorithm we retain a number of principal components such
that we preserve 95% of the variance in the force sample data.

4.3 PDF for Maximum Stress

If the maximum von Mises stress in any element exceeds the yield
stress, the object will fail, e.g. fracture. Thus, we relate the probabil-
ity of object failure to the probability that an object will experience
a given maximum von Mises stress, P (σ̃).

We approximate this probability density function (PDF) using a
piecewise linear function. To construct this approximation we
begin by computing the histogram, H , which requires binning
the maximum von Mises stress of each stress sample, given by
iσ̃ = max

(
σ̃
(
iσ
))

. Here max is the component-wise maximum
taken over the global vector of per-element von Mises stresses, com-
puted by the function σ̃e

(
iσe
)

from Equation 3. We then discretize
P (σ̃) using a 1-dimensional finite element grid where the eth ele-
ment is equipped with k finite element shape functions ψel (x).

We note that we can represent H as

H (x) =

Ns∑
i=1

δ
(
x− iσ̃

)
(9)

where δ (y) is a discrete Dirac delta, defined by

δ (y) =

{
1
Ns

y = 0

0, otherwise
. (10)

In each finite element of P (σ̃) we estimate the distribution as a
linear combination of shape functions, P e (σ̃) =

∑k
l=1 alψ

e
l (σ̃),

where al are unknown coefficient values. These values can be
estimated in a Galerkin fashion. Each element, e, in our probability
space discretization emits two linear equations of the form

k∑
l=1

al

∫
y

ψeg (y)ψel (y) dye =

∫
σ̃

ψeg (y)H (y) dy, (11)

where g indexes the element shape functions and we integrate over
the range of σ̃ covered by element e. Due to the properties of the
discrete Dirac delta, we can simplify this equation to

k∑
l=1

al

∫
σ̃e

ψeg (y)ψel (y) dy =

Ns∑
i=1

ψeg

(
iσ̃
) 1

Ns
, (12)

which can be assembled into a tridiagonal linear system of the form
Na = b, where a is the stacked vector of coefficients al. Due to its
sparse nature this system can be solved efficiently. By concatenating

all element shape functions into a matrix Ψ (y) we can express our
entire PDF using the simple equation

P (σ̃) = Ψ (σ̃)N−1b, (13)

4.4 CDF and Yield Stresses

Recall that we are interested in computing the probability that the
object will not break, i.e., that the maximum von Mises stress stays
below the yield stress. This can be expressed as P (σ̃ < σ̂), where
σ̂ is the yield stress for a given material. This is simply the CDF of
the PDF computed above. Another advantage of the piecewise PDF
representation is that we can easily modify it to directly compute the
CDF by inserting the appropriate integral into Equation 12 so that it
becomes

P (σ̃ < σ̂) =

∫ σ̂

0

Ψ (y)N−1bdy, (14)

Since only the Ψ matrix depends on y we can integrate this matrix
quickly as a preprocess. One of the major advantages of this CDF
representation is that it is easy to differentiate, a property that will
become crucial when we discuss solving inverse problems later on.

Once this is done, a single linear system solve (additional to our
FEM solves), followed by a binary search across our finite element
probability grid allows us to efficiently compute the probability that
the object will not break. We compute the probability of failure as
the compliment of this value, or Pfail (σ̃ < σ̂) = 1− P (σ̃ < σ̂).

5 The Forward Analysis Problem

By computing Pfail we have solved our forward analysis problem.
For any input mesh, accompanying material assignment and collec-
tion of usage scenarios we can estimate the probability of object
failure. We can also compute a spatially varying map of failure
probabilities using our stress samples. In this case, for any point
in our object, x ∈ R3, we can compute local probability of failure,
Pfail (x), by evaluating Equation 14 on the per-element von Mises
stress samples i.e., without taking the max over the entire object.
We can display both Pfail and the spatially varying Pfail (xi) to a
designer or engineer, allowing them to make design decisions guided
by our measure of real world robustness. Two examples can be seen
in Figure 6, which highlight the importance of context sensitive
analysis. Different scenarios lead to different points of failure for
the same object. Notice how the bunny’s hands are robust during
a simple drop test, but suffer extensive damage when collided with
another bunny. This is due to the different nature of the contacts,
something that can only be revealed using our method. More re-
sults are shown in section 7. We can also combine sample sets to
perform an aggregate analysis across multiple scenarios (Figure 7).
We compare our combined result to one computed via worst-case
analysis (Figure 7). In this case both methods agree that the horse’s
legs are its weak point but worst-case analysis both fails to predict
the non-fragile legs in the stairs and drop cases as well as misses the
fragile body and mouth regions in the smash and combined cases.

One of the additional features of failure probability as a metric is
that it is comparable between objects. This induces a “reliability
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ordering” on our designs which allows designers to explicitly trade-
off reliability for artistic considerations (see Figure 9).

Figure 6: Example probability maps for one object (shown in four
views) under two different scenarios, our Drop Test scenario and
the Two-Object Smash scenario. We have highlighted the major
differences in the computed probability maps in red. More complex
contacts in the Smash scenario lead to different local reliability
estimates (i.e the breaking arms). Note that to better visualize
differences in failure probability we normalize the spatially varying
maps with respect to their maximum probability.

6 Inverse Design – Topology Optimization

In addition to being used as a guide for designers and engineers, our
failure probabilities can also assist in guiding topology optimization.
Topology optimization involves either adding or removing material
from an initial object design in order to optimize its structure. There
are many ways in which topology optimization could utilize failure
probabilities but in this paper we explore the specific case of object
weight reduction. We minimize the amount of material in each
element while maintaining the probability of failure under a given
threshold. This can be formulated as:

w∗ = arg min
w

Nel∑
e=1

we

∫
Ωe

ρe dΩ,

s.t.P (σ̃ < σ̂) > Θ

Ku = f

0 < ωmin ≤ w ≤ 1

(15)

where we ∈ [0, 1] is a “fill ratio”, for the eth finite element where
ωmin indicates the element is completely empty, w is the stacked
vector of all we, Ωe and ρe are, respectively, the volume occupied
by and the density of the eth finite element. The small threshold
ωmin (we use 1e-5) is used instead of 0 to avoid singularity. We use
P (σ̃ < σ̂) to constrain the robustness of the object being optimized.
This gives the designer an intuitive handle for trading between the
amount of material used during fabrication and the durability of
the object. We enforce sparsity of the weights by using the Solid
Isotropic Material with Penalization (SIMP) material model with
an exponent of 5 [Bendsøe and Sigmund 2009]. We also augment
our cost function to suppress checkerboard patterns using the energy
term from Schumacher et al. [2015], but with a very small weight
(0.01).

Figure 7: Top: Our method supports seamlessly combining samples
from multiple scenarios to provide an aggregate analysis. Bottom:
We compare our combined results to the worst-case analysis for the
same pose. Worst-case both fails to predict the non-fragile legs in
the stairs and drop cases as well as misses the fragile body and
mouth regions in the smash and combined cases.

Figure 8: Topology optimization is used to create a bracket (right)
from an input slab of material (left) along with approriate boundary
conditions and applied forces.

Like our forward design problem, our topology optimization scheme
takes a triangle mesh with volumetric material assignment, and a
usage scenario as input. Additionally, one must specify the failure
threshold Θ. The output, w∗, describes which elements in the
original finite element mesh are either full or have been removed to
save weight. One limitation of our method is that we must constrain
elements on the surface of our object to remain full (we = 1.0).
This gives us a non-evolving contact surface which allows us to
avoid computing complicated, non-smooth derivatives of the contact
forces with respect to the change in contact surface.

6.1 Algorithm Overview

We use the method of moving asymptotes [Svanberg 1987] to solve
Equation 15. Each iteration of the optimization scheme requires the
execution of the following steps:

1. Compute the cost:
∑Nel
e=1 we

∫
Ωe
ρe dΩ

2. Compute the cost gradient: ∇w
∑Nel
e=1 we

∫
Ωe
ρe dΩ

3. Compute the failure probability: P (σ̃ < σ̂)

4. Compute the gradient of failure probability: ∇wP (σ̃ < σ̂)

where ∇w is the gradient operator taken with respect to the per-
element fill ratios.

The first two steps of this process are computationally trivial and
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we have already presented an efficient algorithm for evaluating
P (σ̃ < σ̂) in step three. The major remaining hurdle is evaluating
∇wP (σ̃ < σ̂) and we address this challenge below.

Remarks on Notation During the derivation of the failure proba-
bility gradients we often require the derivative of a matrix w.r.t. a
vector. This yields a third order tensor. In an effort to keep our nota-
tion clean we avoid resorting to indicial notation. Instead, we point
out to the reader that our third order tensors always havew as a free
dimension and are only ever multiplied with standard matrices and
vectors. Hence, we use standard linear algebra notation to denote
these operations which should be thought of as occurring for each
we.

6.2 Failure Probability Gradients

Computing the gradient of our probability functions is a compu-
tationally difficult task given that we require the derivative with
respect to each we where |w| is equal to the total number of finite
elements in our computational mesh.

The first step in making this derivative tractable is to rephrase
P (σ̃ < σ̂) by normalizing with respect to the yield stress allowing
us to re-express Pσ̃ (σ̃ < σ̂) > Θ as Pσ̃

(
σ̃
σ̂
< 1
)
> Θ. Unfortu-

nately, the standard von Mises stress (Equation 3) has been shown
to have a singularity when used for topology optimization. To avoid
this, we use a modified von Mises stress measure [Lee et al. 2012]
which is given by

Se (σe) = w1/2
e

σ̃e (σe)

σ̂
. (16)

We then use the whole object maximum, S = max (S (σ)) to
compute P (S < 1) > Θ as a stable replacement for our previous
probability.

Because we use a piecewise linear representation for the CDF (Equa-
tion 14) we can easily evaluate its derivative. After normalization,
our CDF becomes

P (S < 1) =

∫ 1

0

Ψ (y)N−1b dy, (17)

whereN and b are computed using S. The derivative of this equation
with respect tow is given by

∂P (S < 1)

∂w
=

∫ 1

0

Ψ (y)N−1 ∂b

∂w
dy, (18)

where ∂b
∂w

can be derived from Equation 12 and Equation 16 to be

∂b

∂w
=

1

Ns

Ns∑
i=1

∂ψes
∂S

∂S

∂w
. (19)

This requires the derivative of our shape functions, which are easy to
compute, and the derivatives of our samples with respect to the fill
parameters. Naively, one could use finite differencing to compute
this gradient, but recall that |w| is large. Since each finite differ-
ence solve would require a Finite Element solve this solution is
clearly not viable. Instead we show how to drastically reduce the
number of solves needed to compute this gradient using the Adjoint
method [McNamara et al. 2004].

Computing the von Mises Stress Gradient. Our first major
road block in computing ∂S

∂w
arises because S = max

(
S
(
iσ
))

.
The max function does not have a smooth derivative and so instead
we use a common substitution, the Lp norm [Lee et al. 2012]. As p

approaches infinityLp approaches max. Thus we must now evaluate

∂S

∂w
=

[
Nel∑
e=1

Sep
] 1

p
−1 Nel∑

e=1

Se(p−1)

(
∂Se

∂w

(
iσe
)

+

∂Se

∂σ̃e
∂σ̃e

∂ iσ

∂ iσ

∂w

)
,

(20)

where we have found that p = 8 works well experimentally. Here all
derivatives except for ∂σi

∂w
have straightforward analytical solutions.

Computing the Sample Stress Gradient. Now we arrive at the
per-sample evaluation of the stress gradient. From Equation 8 we
can show that

∂σi
∂w

=− CBK−1 ∂K

∂w
Ū iα+ CBK−1 ∂F̄

∂w
iα

+ CBŪ
∂ iα

∂w

(21)

where Ū = K−1F̄ , ∂K
∂w

is a sparse, third order tensor representing
the derivative of the finite element stiffness matrix with respect to
the fill in parameters, ∂F̄

∂w
is the derivative of our reduced force basis

and ∂ iα

∂w
is the derivative of the sample coordinates in that space.

We can exploit the fact that our force samples are generated by a rigid
body simulation, and are thus only dependent on the center-of-mass
and moments-of-inertia in the object’s current state. This allows us

to evaluate ∂F̄
∂w

and ∂ iα

∂w
using a total of 18 finite differences per

sample. Because rigid body simulation of a single object is fast,
and because sampling is parallel, this step is relatively efficient (see
supplemental material).

Efficient Gradient Evaluation using the Adjoint Method. On
the surface, it still appears as though evaluating Equation 20 will
require a number of inverses of K on the order of the Ns × Nel.
However we can reduce this by considering the gradient formula as
a whole, rather than as a product of individual derivatives. We spare
the details for our supplemental material, but note here that we can
express ∂P (S<1)

∂w
as

∂P (S < 1)

∂w
=

Ns∑
i=1

ai

(
bi +

∂ iσ

∂w

T

ci

)
, (22)

where ai =
∫ 1

0
Ψ (y) dy

[∑Nel
e=1 S

ep
] 1

p
−1

, bi =∑Nel
e=1 S

e(p−1) ∂Se

∂w

(
iσe
)

and ci =
∑Nel
e=1 S

e(p−1) ∂S
∂σ̃e

∂σe

∂ iσ
.

By substituting Equation 21 into Equation 22 we can re-express the
gradient as

∂Pσ̃
∂w

=
(
K−1X

)
:
∂K

∂w
+
(
K−1Y

)
:
∂F̄

∂w
+ x+ b (23)

where X =
(∑Ns

i=1 B
TCT ci ⊗ iα

)
ŪT , Y =(∑Ns

i=1 B
TCT ci ⊗ iα

)
, x =

∑Ns
i=1

∂ iα

∂w

T

ŪTBTCT ci

and b =
∑Ns
i=1 aibi. Notice that X = Y ŪT and Y ∈ Rn×Nb

where Nb is the number of reduced space basis vectors. This means
we can solve K−1Y using only Nb linear solves to compute the
entire gradient. This is a significant improvement from the naive
solution and makes our stochastic topology optimization possible.
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Figure 9: Computed failure probabilities for a series of ninja characters. We order the characters from most robust (left) to most fragile
(right) which allows a toy designer to balance structural soundness with intended expressivity. We also show representative drop test results
performed with 3D printed characters.

7 Results

Below we review the results produced by our algorithm beginning
with spatially-varying and per-object failure probabilities and con-
cluding with some topology optimization results.

7.1 Forward Design Results

We illustrate a scenario where a designer needs to create a plastic
toy character and wants to test different possibilities to pose the
character. On the one hand, these poses should be expressive and
attractive, but on the other hand they should be sturdy. Using worst
case analysis will not provide a measure to distinguish the different
poses as the fragile parts of the object would be the same for all
poses. Using our method, we can sort the different poses according
to their failure probabilities, as well as show specific areas that are
more vulnerable than others (see Figure 9, and more results in the
supplemental file). This allows the designer to gain insight into the
effect of object configuration on reliability, and easily find the pose
that has the best tradeoff between expressiveness and sturdiness.

To provide this analysis, we virtually drop each character 5000 times
from a uniformly random orientation with uniformly random linear
and angular velocities from a height of 1.5m. Note that in our analy-
sis some poses are surprisingly robust such as the ninja in Figure 9A.
Such an example may be disregarded by a designer if they were op-
erating on intuition alone or guided by worst-case analysis. Figure 9
also shows representative, real-world drop test results for 3D printed
realizations of each pose. In general, we observe that objects fail
where predicted and never fail where the failure probability is close
to 0%. Our supplemental material contains representative drop test
results for two other characters, a horse and a bunny.

It is tempting to say that objects will always fail at thin features.
However as can be seen in Figure 2, the reality is much more sub-
tle, and our analysis allows to capture this subtlety. For example,
by virtue of the head shielding the sword from impact, Ninja A
(Figure 9) becomes very difficult to break. Figure 10 shows a com-
parison of our method to both WCA and fabricated results for three
poses of the ninja. In some cases our method and WCA predict
similar failure regions (Ninja C) but for other cases WCA either
overpredicts (ankles and arm of Ninja B) or underpredicts (ankle of

Figure 10: Comparisons of our method to Worst-Case Analysis
(WCA) and fabricated results. While in some cases WCA and our
predictions match well (C), in other cases WCA has a tendency to
over predict weakness (ankles of B) or miss subtle breaking points
(ankles of I).

Ninja I) weakness. Figure 11 shows more such examples illustrat-
ing our method’s ability to detect both common and rare points of
failure. The discovering of these unintuitive outcomes is where our
stochastic finite element analysis excels.

Equally as important is our method’s ability to perform analysis in a
real-world context. Figure 12 illustrates using different scenarios in
the analysis of a plane model. The first is performed using a landing
scenario (Figure 3), while the second is performed using the same
drop test from 1.5m. Using our method we can predict that the object
is much more robust during landing, something that is borne out by
real-world experiments we carried out. We also compare our analysis
to worst-case analysis [Zhou et al. 2013], which mis-predicts the
reliability in both the landing and the drop test case. Here, we see
the advantage of using our context-based method: a designer or
engineer can get a realistic picture of the likely object performance
in real-world scenario. This prevents them from making potentially
unnecessary design decisions such as reinforcing the wings of this
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Figure 11: Examples of non-intuitive robust or fragile features
detected by our method and validated in real-world drop tests. The
thin arms of Bunny E are well protected during falls and are unlikely
to break, as are the bent legs of Horses B and C. Ninja I features
a rare and surprising vulnerability in the left-foot which actually
caused failure during drop testing.

plane.

7.2 Topology Optimization

We present some of our results generated using stochastic topology
optimization. First, in Figure 13 we show an example of a simple
bracket. We optimized for two brackets, one with an applied, de-
terministic load of 10N and a second using a stochastic load. The
stochastic load was prescribed by sampling from two Gaussian dis-
tributions, one for vertical force (mean: 10N, std: 5N) and a second
for transverse forces (mean: 0N, std: 5N). As expected, the deter-
ministic optimization reduces the weight of the bracket but makes
it thin as it only has to balance the vertical load. The stochastic
optimization widens the bracket in order to resist these lateral loads.
This shows the advantage of stochastic topology optimizations –
we can succinctly describe the wide range of forces an object may
experience and produce appropriately optimized designs.

Figure 14 and Figure 15 show penguin meshes that have been op-
timized for varying degrees of robustness using our Drop Test and
Stairs scenarios. In each figure, the top row shows a more fragile
penguin while the bottom row shows a more robust design. This
illustrates how failure probabilities can be used to guide a topology
optimization scheme, in this case to reinforce 3D prints to partic-
ular real-world loading scenarios. Figure 16 shows a 3D print of

Figure 12: Analysis and drop test results for a plane model. We test
two cases, a landing case wherein the plane approaches the ground
at a shallow angle, and a random drop test from 1.5 meters. Notice
that our method accurately reflects the spatially-varying and overall
reliability of the object well while Worst-Case analysis over etimates
the objects fragility.

our optimized 40% failure penguin and Figure 17 shows the results
of drop testing both the 50% and 40% penguins (Figure 14). We
dropped each penguin from identical, randomly generated heights
and orientations until a failure occurred. After 4 drops the beak on
the more failure-prone penguin fractured.

7.3 Performance

Table 2 shows the performance of our algorithm for both forward
and inverse problems. Our benchmark machine was equipped with
4 AMD Opteron 6378 processors (16 cores each) and 256GB of
RAM. We made moderate effort to multi-thread our code. For the
forward problem, our reduced space approach accelerates the linear
solver stage of our method by 32× to 64×, resulting in an 9× to
36× improvement in algorithm performance. To solve the linear
systems, we used Intel’s MKL Pardiso solver. Figure 18 shows
the accuracy of our approach, compared to computation using all
samples. At 95% variance the total relative error between spatially-
varying maps is less than 7% and the probability error is less than
5%. As expected, these errors converge to zero as we increase the
number of basis vectors.

Currently a large part of the runtime is taken by the probability
computation itself which involves several independent, per-voxel,
dense linear algebra operations. Because of its parallel nature, we
feel that this stage of the method is ripe for a GPU implementation
which could improve its performance drastically.

For the inverse problem, our fast gradient computation gives us a
massive performance boost. Even though our examples are rela-
tively small, they are impossible to solve with naı̈ve methods. We
abandoned a single optimization step after 12 hours of wall time
but estimate the total time required to be over 11,000 hours (using
Ns ×Nel×solver time). While not fast, our gradient formulation
is efficient, garnering a 10,000x speedup over the naı̈ve approach
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Figure 13: Two brackets created using topology optimization. Sur-
faces are extracted isocontours from the optimized material density
field. The top bracket is created using a deterministic load while
the bottom is created using our stochastic method. Notice how the
bottom bracket is wider to account for lateral loading.

Figure 14: Two examples of an optimized penguin mesh using our
Drop Test scenario. We use the original triangular mesh to represent
the outer surface of our object and optimize the voxelized interior.
Top Row: This penguin will remain intact with 50% certainty when
dropped from a height of two meters. Bottom Row: A more robust
penguin which will remain intact 60% of the time.

and allowing us to solve these previously intractable problems. One
of the bottlenecks in our method is sampling time. This arises be-
cause the simulator we are using does not feature a straight forward
method to accelerate collision detection for non-convex objects. We
imagine this time can be reduced dramatically with more careful
implementation of the simulation stage.

8 Conclusion and Discussion

In this paper we have presented a new, context-aware, stochastic
finite element method for predicting both the per-object and spatially
varying probability of failure. We leverage a reduced space approach
and novel gradient formulation to solve both forward and previously
intractable inverse design problems. Our method opens up a new,

Figure 15: Two examples of an optimized penguin mesh using our
Stair Test scenario. We use the original triangular mesh to represent
the outer surface of our object and optimize the voxelized interior.
Top Row: This penguin will remain intact with 70% certainty when
dropped from a height of two meters. Bottom Row: A more robust
penguin which will remain intact 90% of the time.

Figure 16: A 3D print of our 40% failure penguin produced using
a Stratysys Fortus 250mc FDM printer.

Figure 17: Drop Tests of our 50% and 40% failure probability
penguins. Note the broken beak on the 50% failure penguin.

robust space of computational structural analysis algorithms for
artists and engineers across a myriad of fields.

Our stochastic finite element method reveals a wealth of opportu-
nities for future work which range from relaxing the assumptions
made in our physical model to improving its performance further.
For instance, we assume that the objects being tested only deform
infinitesimally. This allows us to decouple rigid body simulation
and deformable body simulation in order to accelerate computation.
While the space of infinitesimally deforming objects is huge, ex-
tending the method so that it can be applied to finitely deforming
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Example Grid Size Rank Total Sampling Linear Solve Probability and Gradient Speedup
Ninja (C) - naive 42× 116× 40 9, 618 504 8, 929 185 1×
Ninja (C) - ours 42× 116× 40 139 1027 504 275 185 9.4×
Ninja (E) - naive 50× 96× 59 14, 013 635 13, 172 206 1×
Ninja (E) - ours 50× 96× 59 128 1301 635 382 206 11×
Ninja (H) - naive 49× 99× 58 19, 569 835 18, 629 105 1×
Ninja (H) - ours 49× 99× 58 130 1474 835 462 105 13×
Rabbit (G) - naive 50× 108× 51 17, 561 770 16, 660 132 1×
Rabbit (G) - ours 50× 108× 51 150 1311 770 333 132 13×
Rabbit (H) - naive 40× 100× 60 17, 685 277 16, 639 153 1×
Rabbit (H) - ours 40× 100× 60 146 852 277 316 153 21×
Rabbit (I) - naive 55× 105× 46 15, 504 672 14, 610 222 1×
Rabbit (I) - ours 55× 105× 46 155 1434 672 459 222 11×
Plane - naive 75× 23× 133 14, 883 138 14, 715 30 1×
Plane - ours 75× 23× 133 146 411 138 229 30 36×
Horse (B) - naive 33× 80× 86 13, 566 353 13, 004 209 1×
Horse (B) - ours 33× 80× 86 157 847 353 218 209 16×
Horse (F) - naive 36× 104× 142 71, 782 1155 70, 310 317 1×
Horse (F) - ours 36× 104× 142 141 4399 1155 2730 317 16×
Inverse: Penguin (40%) - naive, 1 step 26× 34× 28 est. 11, 754 hrs 51 570 > 12 hrs (est. 11, 754 hrs) 1×
Inverse: Penguin (40%) - ours, 1 step 26× 34× 28 3, 713 51 57.3 65 min 10, 849×

Table 2: Performance of our algorithm on representative forward and inverse problems. All timings are given in seconds unless explicitly
stated. For inverse problems we record the time for a single optimization step. We also report the rank of the reduced space (number of basis
vectors).
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Figure 18: Variance test for a rabbit model. As the reduced space is
increased to capture more of the variance (number of basis vectors
shown in parentheses), the total breakage percentage (blue solid line)
approaches the brute force, Monte Carlo analysis result (horizontal
line at top). Correspondingly, The relative L2 error of the spatially
varying breakage probability (red dashed line) tends toward zero.

objects would further broaden its scope to objects such as soft casts
for athletes or foam-latex props and costumes used in feature films.

Our method also requires distributions of initial conditions to initial-
ize rigid body sampling via simulation. While not strictly a limitation
of our method, acquiring this data is time consuming and this makes
adding new analysis cases a labor intensive process. Exploiting
computer vision techniques to automatically capture and generate
these distributions would be of great practical benefit. Building
databases of such distributions would also help expedite the adop-
tion of techniques such as ours. There is also the question of how to
best evaluate the output probabilities produced by stochastic analysis
methods. Statistically meaningful validation would require 3D print-
ing hundreds or thousands of models, something which is cost and
labor prohibitive even on the cheapest 3D printers. More involved
manufacturing procedures would only increase this burden. Devis-
ing new experimental methodologies for validation of stochastic
methods is thus necessary to push research in this area forward.

Another barrier to widespread adoption is performance. While our
method is efficient and can certainly solve offline design problems
in reasonable amounts of time, larger datasets and interactive appli-
cations are still beyond our reach. There are two main reasons for
this, first solving very large, sparse linear systems to high levels of
accuracy is still slow, though progress is being made to accelerate
this [Wu et al. 2016]. In conjunction with exploring the use of such
fast linear solvers, we would like to explore using model reduction in

more phases of the algorithm, both to reduce the number of degrees-
of-freedom used for topology optimization and to accelerate each
structural solve. Second, aggregating probabilities on the mesh is
surprisingly time consuming. We would like to explore GPU-based
algorithms for accelerating this step of our stochastic method.

Finally, both the graphics and engineering communities are just
beginning to understand how to control the appearance of topol-
ogy optimized models and to constrain them to fabricable designs.
Adding these appearance and fabrication constraints to our method
is also a promising area of future work.
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2004. Fluid control using the adjoint method. ACM Trans. Graph.
23, 3 (Aug.), 449–456.

MELOSH, R. J. 1974. Finite element analysis of automobile struc-
tures. Tech. rep., SAE Technical Paper.

MUSIALSKI, P., AUZINGER, T., BIRSAK, M., WIMMER, M., AND
KOBBELT, L. 2015. Reduced-order shape optimization using
offset surfaces. ACM Trans. Graph. 34, 4 (July), 102:1–102:9.

MUSIALSKI, P., HAFNER, C., RIST, F., BIRSAK, M., WIMMER,
M., AND KOBBELT, L. 2016. Non-linear shape optimization
using local subspace projections. ACM Trans. Graph. 35, 4 (July),
87:1–87:13.
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