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Context & scale

The large-scale internet of things

appears to be still on the way, and

progress toward that vision is

slow. One explanation for this is

that the batteries are

incompatible with this massive-

scale internet of things. The use of

energy-harvesting techniques is

one of the promising alternatives

to batteries. On the other hand,

introducing self-powered systems

will pave the way for a myriad of

challenges, including the grand

challenge of fairly small power

generation in most energy-

harvesting modalities. It is

necessary to envision an active

operating condition for the
SUMMARY

Self-powered sensing systems augmented with machine learning
(ML) represent a path toward the large-scale deployment of the
internet of things (IoT). With autonomous energy-harvesting tech-
niques, intelligent systems can continuously generate data and pro-
cess them to make informed decisions. The development of self-
powered intelligent sensing systems will revolutionize the design
and fabrication of sensors and pave the way for intelligent robots,
digital health, and sustainable energy. However, challenges remain
regarding stable power harvesting, seamless integration of ML, pri-
vacy, and ethical implications. In this review, we first present three
self-powering principles for sensors and systems, including tribo-
electric, piezoelectric, and pyroelectric mechanisms. Then, we
discuss the recent progress in applied ML techniques on self-pow-
ered sensors followed by a new paradigm of self-powered sensing
systems with learning capability and their applications in different
sectors. Finally, we share our outlook of potential research needs
and challenges presented in ML-enabled self-powered sensing sys-
tems and conclude with a road map for future directions.
electronics, ideally taking

advantage of the relatively low

power produced by most energy-

harvesting systems. Lowering the

power consumption of active

operating electronic systems is an

excellent approach in this context.

Besides, this challenge requests

the development of novel

electronic devices with low active

processing power in the future.

This review presents the

significant advantages of

combining machine learning and

self-powered sensors/systems in

terms of energy scavenging,

output performance, and power

management.We explore the new

paradigm of self-powered sensor/

system, focusing on how machine
INTRODUCTION

Over time, technological advances made sensors vital, allowing us to communicate

more efficiently and interactively with the world. Sensors are ubiquitously used in our

society, including healthcare,1,2 wearable,3 personal electronics,4 automobiles,5

buildings,6 food monitoring,7 robotics,8 and environmental monitoring.9 Sensors

are electronic devices that detect or measure physical/chemical/biological quanti-

ties and record, indicate, or react to them in a certain way. In a nutshell, a sensor

takes our real-world senses or changes and converts them into readable/visible/

audible information for practical applications.

Sensors have existed for a long time. The first device wemight define as a sensor was

invented way back in 1883 byWarren Johnson. The patented work by Johnson more

or less measured the temperature of a room. Twelve years later, his invention ap-

peared in a pneumatic device regulating heating systems. He referred to it as an

‘‘electric tele-thermoscope10,’’ which we now call a thermostat. The term ‘‘smart

sensor11’’ refers to a group of extremely powerful devices. Smart sensors are those

that can sense more than just a few simple physical properties, as well as perform

digital data conversion, and connect to cloud-based devices. They are capable of

self-evaluation and self-calibration. Notably, industry 4.0 is built on the foundation

of smart digital technologies, machine learning (ML), and big data.
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Continued

learning would aid in applications

from healthcare to intelligent

systems. Although combining

machine learning with self-

powered systems is proving to

have a lot of exciting new

applications and advantages, as it

shifts from the research facility to

real-world implementation,

technical, ethical, and security

issues must be tackled. In this

context, the technical and ethical

implications of machine learning

systems in real-world applications

are also discussed.
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In recent days, researchers have been working to advance technology to allow the

production of energy-autonomous (self-powered) wireless sensors. The term ‘‘self-

powered sensor,’’ first introduced by Wang,12–15 can be interpreted in two ways.

The first is that it generates an electric signal without external power when triggered

by mechanical force. The second interpretation is that it can power itself from

ambient energy. Thus, without the need for batteries, self-powered technology is

becoming increasingly important for wireless sensing and the emergence of the

internet of things (IoT). To achieve the trillion-node IoT mission, self-powered bat-

teryless technology is inevitable. The self-powered wireless sensors will pave the

way for the future massive-scale IoT deployment. The gigantic prospect of IoT

comes with a huge amount of new types of data. Batteryless sensors will indeed drive

the next data revolution by enabling billions of never before monitored physical as-

sets to transfer actionable data. According to a recent survey, the battery-free elec-

tronics market could grow from under $8 billion to more than $120 billion by 2041.16

A self-powered sensor system is fabricated with components for energy harvest-

ing/storage, sensing, interaction, monitoring, and communication (Figure 1).

Self-powered sensors can harvest energy from the surrounding environment. How-

ever, energy harvesting remains challenging; for example, solar energy is strongly

dependent on climatic conditions, making it less viable and reliable for self-pow-

ered sensors. Mechanical17 and fluid energy18 may be viable energy sources.

The viability of utilizing the waste heat from industry19 and automobiles20 to pro-

duce power can be scrutinized. Developing advanced waste energy recovery

systems21 can also lower energy consumption and associated environmental im-

pacts. However, a limited amount of power can be harvested (approximately

tens of microwatts per square centimeter) in most energy-harvesting modules,

such as solar,22 thermoelectric23/pyroelectric generation,24 and radiofrequency.25

Nevertheless, batteryless technology is becoming a feasible solution to low-power

electronic systems.

The exponential growth of sensors will significantly impact the big data market in

several ways. One way it allows us to measure things we have never been able to

measure before. One of the issues with sensor networks is real-time data analytics

with the explosion of data generated by sensors. Therefore, statistical analysis tools

are necessary. To date, the use of statistical tools to explore the data is gaining

increased attention. The most significant advances that we see today in data science

are mainly due to two things. The first is ML techniques.33 Notably, deep learning

has been around for many years, but they were not that effective early on due to

the limited computational power to run such algorithms.34 In the past decades,

the increased computational power has unlocked the power of learning techniques,

and together with better access to the data, various breakthroughs have been

achieved. The second is the ability of computers to do different kinds of tasks,

viz., image recognition35 and speech/voice recognition.36,37 Therefore, ML is mak-

ing a big difference in various fields, including biomedicine,38 drug discovery,39

modern education,40 cybersecurity,41 bioinformatics,42 material science,43 quantum

matter research,44 psychological research,45 ecology,46 and so on. It is anticipated

that systems with learning capability will be universally available in daily lives in

the near future, and humans will be able to interact with them naturally and seam-

lessly as never before. Above all, these unique systems would be intelligent to better

serve human beings.

Here, we present the recent progress in appliedML techniques on self-powered sen-

sors and systems based on triboelectric, piezoelectric, and pyroelectric principles in
2 Joule 6, 1–26, July 20, 2022



Figure 1. Anatomy of an integrated self-powered system on a chip

The primary five modules of this integrated system include harvesting transducer, harvesting circuit, energy storage, regulator, and load circuit. Solar,26

wind,27,28 water waves,29 heat,30 and kinetic energy31,32 are some of the potential energy sources for self-powered operation.
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different application fields. We also discuss the technical challenges and ethical im-

plications and provide our outlook on this emerging field.

SELF-POWERING PRINCIPLES AND PROGRESS

Self-powered sensors and systems based on displacement current13,24,47 (Figure 2)

have recently gained considerable attention for their ability to convert biomechan-

ical or thermal energy to electricity for use in different applications. Each of these

displacement current-dominated energy-harvesting devices has its own merits

and practical limitations, as summarized in Figure 3.

In 2006, Wang and Song13 demonstrated the first nanoscale mechanical to electri-

cal energy conservation using zinc oxide (ZnO) nanowire array-based piezoelectric

nanogenerator (with 17%–30% efficiency). According to their study,13 the basic

principle for producing piezoelectric discharge energy is derived from how the

piezoelectric and semiconducting properties of ZnO are connected. In the past

decade, the majority of research focused on piezoelectric nanostructures (particu-

larly ZnO48,49) due to their easy fabrication using low-temperature methods,

whereas many ferroelectrics require high-temperature methods. In addition to
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Figure 2. Self-powering principles

Schematic illustrating the displacement current-dominated energy-harvesting devices

(nanogenerators) based on (A) piezoelectric/pyroelectric principle and (B) triboelectric/

electrostatic/electret effects.
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the evaluation of nanorod arrays grown on rigid substrates, these devices can

benefit from the usage of flexible substrates, as first demonstrated by Choi and

co-workers in 2009.50 Their investigations showed that ZnO nanorods could be

produced in aligned arrays on plastic substrates, thus allowing the devices to be

strained by bending the substrate instead of just absorbing energy from direct

compression/vibrations. Besides, devices were also produced by growing ZnO

nanorods on ‘‘paper substrate51’’ for potential fabrication of large-area flexible de-

vices. Alongside ZnO-based piezoelectric energy harvesters, non-ZnO-based

piezoelectric devices based on lead zirconate titanate,52,53 ZnSnO3 nanostruc-

tures,54,55 barium titanate,56,57 potassium sodium niobate,58 and polyvinylidene

fluoride59 are gaining interests. Recently, two or more filler materials based on

electrospun nanofibers have been exploited to improve the piezoelectric and elec-

tromagnetic wave absorption properties.60,61

Triboelectric nanogenerators (TENGs) convert mechanical energy from the sur-

rounding environment into electricity, which can be used to operate small devices

like sensors. These nanogenerators are based on the convolution of contact elec-

trification and electrostatic induction, which was first demonstrated by the Wang

group.47 The friction between the two sheets resulted in equal but opposite

charges on each side. TENGs operate in four modes62: (1) contact-separation

mode (contact charging and electrostatic induction in tandem), (2) lateral-sliding

mode (sliding in the lateral direction between the two surfaces), (3) single-elec-

trode mode (two electrodes form a closed circuit for the flow of electrons), and

(4) free-standing mode (energy harvesting from a moving object without an

attached electrode). These nanogenerators offer a higher output performance

than piezoelectric nanogenerators, and they can be employed as flexible devices

at lower frequencies (<4 Hz).63 Developing high voltage TENGs is one of the pri-

mary objectives in this field. Many investigations on TENG as a high voltage source

have previously been performed.64,65 However, TENGs cannot currently be used in

industrial or commercial applications due to the unpredictable magnitudes and

frequencies of input sources,66 durability67/stability issues,68 and inefficient power

management.69
4 Joule 6, 1–26, July 20, 2022



Figure 3. A comparison of merits and limitations of energy-harvesting devices based on

triboelectric, piezoelectric, and pyroelectric principles
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In thermoelectric power generation, the Seebeck effect uses a temperature differ-

ence between two ends of the device to drive charge carrier diffusion, whereas the

pyroelectric effect is intimately linked to changes in a material’s polarization due to

temperature changes.70 It should be emphasized that devices based on the See-

beck effect have a reduced energy conversion efficiency due to the low efficiency

of the Seebeck effect in thermal energy conversion, which is mainly caused by

time-dependent temperature changes with spatial homogeneity into electrical

energy.71 In 2012, Zhang’s group24 exhibited the pyroelectric effect of ZnO nano-

wire arrays for the first time by linking the pyroelectric and semiconducting capa-

bilities of ZnO to create a polarization electric field and charge separation utilizing

the time-dependent change in temperature. A typical pyroelectric nanogenerator

comprises three layers: (1) the top metal layer is patterned to effectively accept

heat energy and also serves as a top electrode, (2) the middle layer transforms

thermal energy to electric energy by changing its internal polarization, and (3)

the bottom metal layer serves as a bottom electrode. Unlike piezoelectric and

TENGs, pyroelectric nanogenerators would not suffer mechanical deformation;

hence, they are more reliable in practical applications. Pyroelectric nanogenerators

possess a lot of potential in wearable technologies. A wearable pyroelectric nano-

generator that harvests energy from breathing could be utilized as a self-powered

sensor to track human health.72,73 The dielectric breaking strength of the materials

determines the energy density of pyroelectric nanogenerators. In this context, the

usage of ferroelectric materials such as lead zirconate titanate, barium titanate,

polyvinylidene fluoride, and poly(vinylidenefluoride-co-trifluoroethylene), and

ceramic materials like ZnO are beneficial.74 However, compared with polymer-

based pyroelectric nanogenerators, high power output is offered by ceramic-

based pyroelectric nanogenerators.75 Overall, the important historical milestones

in self-powered sensors and systems based on piezoelectric, triboelectric, and py-

roelectric principles are summarized in Figure 4.
Joule 6, 1–26, July 20, 2022 5



Figure 4. Historical milestones in the self-powered sensors/systems based on piezoelectric, triboelectric, and pyroelectric principles

(A) Wang and Song,13 with permission from Science, LN: 5257090180791.

(B) Wang et al.,76 with permission from Science, LN: 5257090612378.

(C) Zhou et al.,77 adapted with permission, copyright ª 2008, American Chemical Society.

(D) Yang et al.,78 adapted with permission, copyright ª 2009, American Chemical Society.

(E) Zhu et al.,79 adapted with permission, copyright ª 2010, American Chemical Society.

(F) Hu et al.,80 adapted with permission, copyright ª 2011, American Chemical Society.

(G) Fan et al.,47 with permission from Elsevier, LN: 5257100284332.

(H) Yang et al.,24 adapted with permission, copyright ª 2012, American Chemical Society.

(I) Zhu et al.,81 adapted with permission, copyright ª 2013, American Chemical Society.

(J) Park et al.,82 with permission from John Wiley and Sons, LN: 5257440306511.

(K) Lin et al.,83 adapted with permission, copyright ª 2015, American Chemical Society.

(L) Zheng et al.,84 adapted with permission, copyright ª 2016, American Chemical Society.

(M) Wang,85 with permission from Elsevier, LN: 5257110035065.

(N) Liu et al.,86 with permission from John Wiley and Sons, LN: 5257110240306.

(O) Zou et al.,87 adapted with permission, copyright ª 2019, Springer Nature.

(P) Cheng et al.,88 with permission from John Wiley and Sons, LN: 5257450079510.
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MACHINE LEARNING IN SENSORS AND SYSTEMS

Machine learning in triboelectric sensors and systems

Self-powered triboelectric sensors and systems have recently been used in a variety

of fields, including wearable devices,89–91 healthcare,92–97 smart technologies,98–100

industrial automation,101 and environmental monitoring,102,103 which has prompted

their integration with emerging areas such as ML and the IoT. However, to achieve
6 Joule 6, 1–26, July 20, 2022



Figure 5. Representative real-time applications of triboelectric sensors with ML techniques

(A) Self-powered wireless optical transmission for wireless pressure detection.104 Used with

permission from Elsevier, LN: 5257131196824.

(B) 3D-printed elastomeric metal-core triboelectric wristband.105 Used with permission from

Elsevier, LN: 5257131451505.

(C) Tremor sensor targeting Parkinson’s disease.106 Used with permission from Elsevier, LN:

5257140161996.

(D) Intelligent driver assistance system.107 Used with permission from Elsevier, LN: 5257140423436.

(E) Smart socks.108 Adapted108, copyright ª 2020, Springer Nature.

(F) TENG-based writing pad.109 Used with permission from John Wiley and Sons, LN:

5257660311252.
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such integration, the current overcrowding of radiofrequency signals must be

resolved. Also, it is possible to expand IoT applications by combining optical wire-

less communications and TENGs.104 Some of the real-time applications of triboelec-

tric sensors with ML techniques are illustrated in Figure 5.

A recent study shows that TENGs can be used not only as a mechanical trigger but

also as a power source, enabling the development of a simple optical wireless com-

munications transmitter with no additional power or complicated circuits.104 Image

processing techniques may aid in the decoding of the associated data, so that the

functionality of wireless access, pressure sensing, and security authentication can

be well understood. Furthermore, different features such as the typical on-off

feature, intensity feature, and biometric feature can be demonstrated.104

In the case of biomedical applications (e.g., health monitoring of patients), inte-

grating tremor sensors with ML can help diagnose a patient’s health issues and

monitor real-time health.109,110 According to the researchers, a catechol-chito-

san-diatom hydrogel-frequency TENG can be used for energy harnessing and

powering a wearable self-powered tremor sensor for Parkinson’s disease predic-

tion using ML.106 As a suitable platform for long-term health analysis of individ-

uals, deep learning integrated triboelectric sensor coupled with an image sensor

can be used to construct smart toilets with more than 90% prediction

accuracy.111
Joule 6, 1–26, July 20, 2022 7
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In applications like controlling human organs, self-powered 3D-printed devices

outperform shape-adaptive membrane-based devices.105 The self-powered 3D-

printed stretchable devices show three distinct advantages: (1) self-powering func-

tionality, (2) form-fitting design, and (3) real-time monitoring capability. Stretch-

ability, reliability, efficiency, and compatibility with ML algorithms are just a few of

the main benefits of these devices. Therefore, 3D-printed stretchable TENG devices

are good candidates for organ preservation. By using a perfusion system to locate

swollen organs, improved organ protection can be achieved. The 3D-printed

TENGs’ utility and sensitivity can be demonstrated through applications such as or-

gan mechanosensing and human motion sensing. By combining a 3D-printed wear-

able TENG interface with supervised ML algorithms, researchers recently created a

high-accuracy real-time ‘‘silent voice105’’ (a silent speech interface system that allows

people to communicate in the absence of sound). Their inventions include image-

based facial expression tracking and speech in the nonexistence of the user’s sound

output. The most popular silent speech interfaces are continuous sound security

control and facial expressions. Notably, the ability to 3D print elastomeric metal-

core TENG fibers has far-reaching implications in this field. Advanced image and

data processing methods are needed for the mentioned interface methods. Howev-

er, advanced processing techniques could require a lot of computing power. The

power requirements for imaging systems, on the other hand, restrict the system’s

portability.

ML algorithms can be used in a variety of fields other than biomedicine and healthcare.

Recently, a new TENG-basedmethod for detecting driver steering behavior was devel-

oped.107 The TNEG-based approach has a faster average reaction time than other

possible methods for detecting driver steering behavior, such as a driving simulator

or a camera. TENG-based ML methods are said to aid in developing intelligent driver

assistance systems with a detection accuracy of more than 85%.107 Merging triboelec-

tric and photonics technology can provide a cost-efficient solution for secure commu-

nication with nearly 95% accuracy when paired with deep learning.112

A textured TENG could be used to detect people’s handwriting with high accuracy.

Such textured TENG has many potential applications, including personal hand-

writing recognition, authentication, safety, and private data protection. Advanced

data processing methods can be used to get essential information and minimize

data dimensionality for multilanguage recognition. Furthermore, combining the

advanced data processing methods with the statistical learning classifier might

help identify multilanguage handwriting with greater than 90% accuracy.113 Sign

language is critical for bridging the communication gap between speech-/hear-

ing-impaired persons and others. Recently, deep learning-assisted sign language

identification and communication systems are evolving to allow remote and bidirec-

tional communication with more than 85% accuracy.114

The pre-trained neural network is an excellent approach in the race to digitize

data115 and sensor applications in the IoT era.116 A high recognition rate could be

achieved in data digitization by improving the reference points and spacing lines.

Moreover, the issues associated with optical character recognition can be resolved

when character recognition based on TENG is the light-free touch type.115 There is

also a possibility of creating memristive neural networks using self-powered

electronics.117 Artificial neural network (ANN) models can be used to develop mu-

sic-playing versatile flags, flexible patches for the high-fidelity recording of music,

or discrete devices that can expose the identity of people attempting to gain access

to a computer.118
8 Joule 6, 1–26, July 20, 2022
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In the environment application, one of the significant environmental problems faced

by scientists and hydrologists is improving awareness of suspended sediment dy-

namics. Thus, the effect of suspended sediment transport on water quality, biogeo-

chemistry, and landforms is critical. Combining TENG with a deep learning method

makes it easy to identify sand particle parameters,119 shedding light on developing

new methods for real-time sediment monitoring.

It is noticed that the high amount of energy that is required to acquire and interpret sub-

tle sensory data is a major obstacle for intelligent systems.120 Thus, developing an arti-

ficial sensory memory system would advance intelligent and bioinspired electronic de-

vices. Other applications, such as neuromorphic systems, human-machine interaction,

and massive neural networks, pose exciting opportunities. Additional spatiotemporal

cross-correlations for associative learning and memory are likely to be implemented

to incorporate more mechanoplastic neurons.121 Active mechanoplastic neuromorphic

systems are crucial for progressing beyond vonNeumann’s architecture in terms of flex-

ibility and diversity toward modern human-machine interfaces. ML techniques can be

applied to develop various smart electronics based on TENG. To name a few, ML

models were used to create high-accuracy TENG-based smart electronics for voice

recognition122 and self-powered stretchable IoT-based triboelectric systems to detect

toxic gas leaks in chemical plants (D. Hasan et al., 2019, IEEE, abstract).
Machine learning applied to piezoelectric sensors and systems

The knowledge of approximate data associated with internal parameters is needed

to model, simulate, and optimize piezoelectric sensors and transducers. Conse-

quently, the material constants determined by electrical impedance tests can

significantly impact the characteristics of lossy piezoelectric materials. In such a

case, intelligent evolutionary algorithms like genetic algorithm123 can improve

parameter estimation of piezoelectric sensors and systems, reasonably enhancing

their performance. Such techniques can also be used for a variety of piezoelectric

or composite materials.123 One may also use statistical learning approaches like

data mining to estimate the governing properties of piezoelectric materials with

high Curie temperatures.124 Rather than a heuristic approach, a statistical

learning-based computational strategy would be a mechanistic approach. Gener-

ally, integrating the statistical learning approach in the field of piezoelectric will

help material discovery and materials design.
ML combined with piezoelectric transducers improves the system’s performance

and efficiency when it comes to applications like damage deduction of structural

components. In ML, supervised learning algorithms, such as support vector ma-

chines (SVMs),125 can be used to evaluate the results of damage deduction. Super-

vised learning can ensure accuracy during the cross-validation set to yield better ef-

ficiency. Moreover, higher scores (>90%) can be expected with a small dataset.125 A

further improvement in the results is possible by considering the external variables

such as temperature, loading conditions, etc. In addition to applications like dam-

age deduction of structural components, piezoelectric transducers and ML can

also be used to monitor the health of wooden structures.126–128 If ‘‘artificial intelli-

gence installed on things’’ and online learning are used, energy-saving is

ensured.126 Indeed, supervised learning algorithms can be implemented in different

applications with different kernel functions for better accuracy and precision.129

Experimental determination of the operating frequency of a piezoelectric transducer

is difficult. It is even more challenging to determine the resonance frequency of the
Joule 6, 1–26, July 20, 2022 9
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transducer theoretically. Mega-fuzzification methods are suggested to determine

the frequency of the piezoelectric transducer, which can provide better estimation

even when the data size is large.130 Intelligent techniques such as deep neural net-

works and genetic algorithms, in addition to mega-fuzzification methods, can opti-

mize the resonant frequency of piezoelectric devices. A well-trained deep neural

network can predict results with greater than 90% accuracy. On the other hand, ge-

netic algorithms can reduce the operating frequency and increase the energy con-

version performance.131 When comparing the accuracy of classification, simple ML

techniques show a clear advantage over deep neural networks.132

Besides converting mechanical stress to electricity, piezoelectric materials also show

great promise in actuator applications such as ultra-precise motion control systems.

However, the high nonlinear features seen in the dynamics of piezoelectric actuators

are the biggest challenges to utilizing their potential effectively. Employing piezo-

electric actuators in conjunction with ML algorithms allows for more accurate con-

trol.133 In the presence of disturbances and noise, the tracking differentiators of a

nonlinear proportional integral derivative controller may aid in the production of

high-quality differential signals. Incorporating a learning controller into such a sce-

nario can cut the tracking error in half.133

In the field of self-powered piezoelectric nanosystems, using the univariate proced-

ure to study the piezoelectric characteristics does not provide good predictions due

to the absence of interaction between different variables. Thus, ANN is thought to

be more capable of making accurate predictions. A recent study demonstrated

that the ANN could accurately model the physical and chemical properties of elec-

trospun nanogenerators.134

Machine learning in pyroelectric sensor technology

Pyroelectric sensor technology has recently gained popularity. Combined with ML,

this technology would play a significant role in intelligent systems to open up new

possibilities and provide solutions that are both effective and useful in various appli-

cations (Figure 6). Integrating different ML algorithms in building intelligent systems

is becomingmore popular as ML techniques are applied in various industrial sectors;

for example, a combination of ML and pyroelectric infrared sensors was used to

detect movement direction.135 Although instant movement detection remains a

challenge, learning algorithms are helpful in this situation. When we compare the

recognition accuracy of different ML algorithms like decision tree, decision table,

naive Bayes, Bayes net, k-nearest neighbor (kNN) algorithm, multilayer perceptron,

and SVM with different kernels, Bayes net is found to be good in the classification of

walking directions and distances. For classifying walking speeds, direction, and

distance, a multilayer perceptron works well. However, in most analyses, the kNN

algorithm and SVM outperform the others. In general, the kNN algorithm is a better

option because SVM’s quadratic and cubic kernels need more computing load and

memory resources. On the other hand, SVM works better with a smaller feature

set.136

The sensing capability of distributed infrared sensors is limited in movement deduc-

tion because they can only recognize the path-dependent activity. Incorporating a

mask array can account for visibility modulation, and stereo sensing mechanisms

can be used to increase the sensing area.140 In human movement detection studies,

exploring the applicability of open-source software platforms will also aid in deploy-

ing a variety of real-time applications, including smart technologies. However, real-

time applications necessitate the incorporation of safety and security systems.
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Figure 6. Some applications of pyroelectric sensor technology

From left, real-timemotion detection and in-house monitoring,136,137 intelligent electronics,138 and

biomedical systems to predict respiratory failure.139
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Valuable information about the position of people and their movement in an indoor

environment can also be extracted using multiple pyroelectric infrared sensors.

Therefore, a pyroelectric infrared sensor array can be used to create a human

tracking system. The human tracking devices can be arranged in a square grid,

3.64 m apart across the ceiling and 2.6 m above floor.137 Such human tracking sys-

tems have massive demand in many fields, including biomedicine, healthcare, and

the energy sector. Interestingly, the combination of pyroelectric infrared sensor

modules and ubiquitous IoT allows for accurate human movement monitoring.

The use of feature vector-based classification is a viable way to improve performance

using less computing power.141 Although the computing power requirements can

be solved with multiple sensor modules, achieving significant accuracy with just

one sensor module is highly appreciated.

Intelligent home technologies are becoming increasingly common these days. In the

case of a voice-controlled intelligent fan device, ML algorithms can recognize the

voice command. However, when there is no voice command, the infrared pyroelec-

tric sensor can be incorporated with the device to sense the temperature of the peo-

ple and regulate the fan speed.138 Intelligent home systems offer high accuracy, bet-

ter efficiency, and reasonable practicality in the modern age.

Wearable smart pyroelectric transducer-based devices are becoming more and

more important in the medical field for monitoring and treating critical patients.

The time it takes for medical experts to get the data they need will be significantly

reduced if an ML algorithm and a patient tracking scheme are integrated.139 The

use of such high-precision devices would substantially reduce the labor-intensive

hours spent on critical care units. If an emergent patient requires noninvasive care,

the device’s automatic alarming system will notify the patient if apnea occurs. Unsu-

pervised ML methods such as principal component analysis (PCA) can be used to
Joule 6, 1–26, July 20, 2022 11



Figure 7. Some real-world applications of hybrid sensors with ML techniques to detect

biomechanical energy emitted by human motions

(A) Hybrid sensor under the leg-rehabilitation device,148 adapted from Lu et al.,148 copyright ª
2021, MDPI.

(B) Hybrid sensor for on-skin triggered biomechanical motion.149 Used with permission from IOP

Publishing, LN:1194679-1.

(C) hybrid sensor for multifunctional pressure sensing and human gesture identification,150 Used

with permission from Elsevier, LN:5260241225331.
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build an intelligent multi-walker identification and tracking device.142 The PCA is

nothing but the use of binary principal components to extract the content pattern

from high-dimensional data. Integrating binary PCA and pyroelectric sensor data

would help build a robust and intelligent real-time multi-walker system.

Extracting required functionality, like any other ML application, is crucial to the success

of pyroelectric sensor-based technology. The most challenging part is deciding on the

correct feature set. The accuracy can suffer as different features are used directly to train

model.143 Studies are, therefore, needed on characterizing appropriate features using

pyroelectric infrared transducers. In general, organic materials have potential applica-

tions in biomedical monitoring, tactile sensing, and artificial e-skin applications.144
Machine learning in hybrid sensor technology

Hybrid nanogenerators integrate different nanogenerators into a single system that

can use several energy sources independently/simultaneously, maximizing the use

of any accessible ambient energy.145,146 The hybrid mode of operation is primarily

concerned with power optimization and device compactness.147 Being introduced

as health monitoring sensors, they can detect even minimal biomechanical energy

emitted by human motions (Figure 7). Recently, some progress in using ML tech-

niques in hybrid nanogenerators has been demonstrated.148–151

The use of triboelectric and piezoelectric energy-harvesting devices has been

demonstrated to detect and monitor human motions. In recent works, a triboelec-

tric-piezoelectric multifunctional sensor was used to analyze different actions in a

leg-rehabilitation device,148 human gesture recognition,150 and in the context of

mask vibrations recognition.149 The deep learning long short-term memory model
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was used for data analysis in all three cases. Practically, the importance of the van-

ishing gradient problem limits the use of recurrent neural networks. The long

short-term memory approach can be used to solve the data training problems

that have been observed in recurrent neural networks.149 It was noted that the

recognition rate of biomechanical motion-level classification using the deep

learning model corresponded to 81.8%, whereas the human gestures classification

rate corresponded to 82.3%. High classification accuracy was achieved by

combining a piezoelectric-triboelectric hybrid sensor and a long-short-termmemory

model to identify data related to facial muscle. The developed integration could

result in an 88% classification accuracy,149 revealing a promising future of self-pow-

ered sensors in intelligent medical systems.

Nowadays, cyberattacks are becoming a global threat. A promising security layer

system against password vulnerabilities is urgently needed. Keystroke dynamics-

based authentication offers higher cybersecurity thanmost password-based authen-

tication.151 In recent work, an electromagnetic-triboelectric hybrid nanogenerator

for biometric keystroke dynamics-based authentication and identification coupled

with ML is reported. The hybrid sensor-based authentication system combined

with ANN achieved an accuracy of 99%.151

A summary of variousML algorithms used in triboelectric, piezoelectric, pyroelectric,

and hybrid sensor systems is provided in Figure 8. Most ML models have a classifi-

cation/prediction accuracy of over 90%, and SVM is found to be the most promising

ML technique for data categorization.
A NEW PARADIGM OF SELF-POWERED SENSOR/SYSTEM WITH
LEARNING CAPABILITY

Because of the wide use of internet-related technologies, huge volumes of data are

now accessible for analysis. However, humans lack the intellectual ability to compre-

hend such large quantities of data. Data science techniques may thus be used to pro-

cess large quantities of data and make prudent decisions. ML is one such data anal-

ysis technique that employs statistical tools to explore the data without explicitly

being programmed. By combining ML and self-powered sensors/systems, signifi-

cant advantages in terms of energy harnessing, power management, information

extraction, and decision-making can be envisaged, paving the way for the large-

scale utilization of self-powered systems ranging from agriculture to various per-

sonal smart technologies. We have identified five sectors and some prominent tech-

nologies based on ML in self-powered sensors/systems (Figure 9).
Agriculture

The development of ML-enabled self-powered devices in the field of agriculture al-

lows monitoring of critical parameters like climatic conditions, soil pH, nutrient con-

tent in the soil,152 and so on to improve the crop yield. Furthermore, monitoring such

parameters would prevent overfertilization or overwatering in advance. Overfertili-

zation can reduce osmotic potential, leading to decreased photosynthesis.153 This

issue can also promote algal growth in waterways, degrading water quality.154 Over-

watering, on the other hand, is a big concern in locations with limited water supplies.

In aquaponics155 (a type of aquaculture that can be utilized to produce food closer to

urban areas), self-powered sensors/systems can be used to optimize the growth of

both fish and plants by monitoring and adjusting factors like oxygen depletion

and pH swings. Recently, unmanned aerial vehicles (UAVs) or drones are becoming

increasingly important and have numerous applications in digital farming, including
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Figure 8. A summary of ML algorithms used in triboelectric, piezoelectric, pyroelectric, and hybrid sensing systems with their classification rate/

prediction accuracy

(A) Tong et al.105

(B) Ding et al.104

(C) Zhang et al.107

(D) Ji et al.122

(E) Zhang et al.113

(F) Wen et al.114

(G) Oiwa et al.126

(H) Tripathi et al.132

(I) Gargari et al.129

(J) Hassan et al.139

(K) Gami.141

(L) Syu et al.150

(M) Lu et al.148

(N) Maharjan et al.151

(O) Shu Fang et al.149
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high-throughput phenotyping (HTP), plant breeding programs, and weed/insect/

disease/injury stressors control.171–173 However, the charging of UAVs relies heavily

on manual operation, which is not only tedious and stressful for human operators but

also inefficient and costly for long-duration flight missions. The short endurance of

UAVs due to the battery constraint (�30 min) also limits the practical application

in large farm sites. Particularly, when heavier sensing equipment is attached to the
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Figure 9. Future perspective of ML in self-powered technology

From the top, five major sectors such as agriculture,152–156 healthcare,108,147,157–159 wearables,160–165

communication,166,167 and IoT168–170 in which self-powered sensors andMLwill play a huge role, particularly

in healthcare and wearables, technologies including implantable self-powered wireless chips to cure

neurological conditions, self-powered nanosensors to explore the biological world, biomimetic self-

powered electronic skin to monitor health, and self-powered facemasks activated by breathing will make a

breakthrough in the coming years.
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platform, battery consumption is exponentially accelerated. Thus, developing en-

ergy-autonomous UAVs combined with ML techniques could address numerous

challenges in smart agriculture.

Healthcare

In the healthcare sector, self-powered sensors capture data from human bodies and

environments, allowing continuous monitoring and generating huge amounts of

data for analysis.157 Self-powered sensors can benefit from ML technologies to

expand their capabilities. In piezoelectric and TENGs, classification, regression,

and probability algorithms can be used to tackle design, fabrication, analysis, and

application problems.158 For implantable sensors or electronics, biocompatibility

is a critical factor. Therefore, the implanted self-powered devices should be made

of biocompatible materials. In addition, the nanogenerator’s structure should be

optimized to reduce output attenuation after packaging and implanting.159 In this

sector, hybrid nanogenerators are suggested for a variety of healthcare settings to

power noninvasive sensors, enabling continuous patient monitoring without

infringing on the user’s motion or comfort.147 Once combined with ML techniques,

new opportunities will be created in health diagnostics and disease prevention.

Wearable electronics

Wearable electronics have advanced tremendously in the past decade, owing to their

inherent flexibility and portability. Wearable sensors monitor physiological signals

and allow for continuous and real-time sensing.160,161 High-performance wearable bio-

electronics should have exceptional sensitivity174 and long-term stability.175,176 In 2019,
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the market for wearable technology was approximately $70 billion.177 Furthermore, the

COVID-19 pandemic has put a greater emphasis on wearable sensors, including real-

time disease monitoring,162 wearables for contact tracing,178 and isolation patient

monitoring.179 In wearable technology, e-textiles provide a framework for deploying

sensors and actuators in applications that are unobtrusive and ubiquitous.163,180 By

convolving E-textile with advanced algorithmic techniques, textile designers will be

able to buildmore sophisticated systems.163,164 Likewise, the deployability of e-skin sys-

tems has increased recently, establishing the groundwork for their scalability.165 Howev-

er, constraints like resilience, mechanics, information processing, and transport pose a

challenge to providing efficient tactile skins to robots or prosthetic devices.165 Upscal-

ing e-skin system necessities processing of vast amount of variable tactile input with

complex spatial relationships between sensing locations.181

Communications

Self-powered wireless sensing devices are becoming increasingly important in

developing remote monitoring systems as fifth-generation (5G) communication is

advancing.182 However, adopting 5G networks comes with a slew of challenges,

including limited communication range and high power requirements.182 In 5G,

ML would aid in precise learning about the working environment and offer a wide

range of services.166 Moreover, deep learning has shown that it can improve

communication reliability while also reducing the computational complexity of 5G

and future networks.167

IoT

The ML-enabled smart homes and related applications have been demonstrated to

be an efficient paradigm for capturing a richness of sensory data.168 Although cur-

rent developments have shown successful implementation of intelligent technology

for individual event recognition in smart home applications,169,170 system-level inte-

gration of sensor, power supply, and ML technologies has not been fully explored.

Self-powered systems with learning capability will correlate with more intelligent

things in the network, thereby recognizing complex events and making appropriate

decisions to serve human beings better.

The emergence of bioinspired sensors

Recently, bioinspired sensors have demonstrated immense applications. Bio-

inspired sensors have excellent electrical power harvesting abilities and multifunc-

tional sensing capabilities. To cite a few examples of bioinspired sensors, Calathea

Zebrine leaf has uniform conical structures that allow for fabrication and use of arti-

ficial superhydrophilic surfaces183 for applications including robotic tactile

sensing184 and ionic skin185; self-cleaning capability of lotus leaves allows for fabri-

cation of superhydrophobic interfaces186; superhydrophobic and adhesive

nature187 of rose petal allow for the fabrication of biomimetic polymer films for har-

vesting mechanical energy188,189; large number of air-filled chambers in water hya-

cinth petiole allow for the development of porous triboelectric materials190; electri-

cal signal generation ability of living aloe vera plant indicates its potential use in

biomechanical energy-harvesting applications191,192; superior specular transmit-

tance (maximum of 91% for visible light) of moth’s eye allows for the development

of anti-reflective energy harvesters193; electrostatic field obstacle detection mecha-

nism of cockroaches allows for the development of sensor devices for identifying

non-contact motions194; butterfly wing architecture instigates the fabrication of de-

vices for sensing195 and energy applications196; treefrog’s toe pads show superior

frictional properties for high self-powered operation197; high electric potential gen-

eration ability of electric eel opens up new opportunities for the development of
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devices for underwater sensing198,199; and muscle-fiber-inspired piezoelectric

textile having interfacial-adherent linkage for personalized wearable healthcare de-

vices.200 Applying ML techniques in bioinspired/biomimetic sensors will open up

new possibilities for intelligent systems, security, and information protection.
CHALLENGES AND OUTLOOK

The large-scale IoT appears to be still on the way, and progress toward that vision is

slow. One explanation for the slow progress of large-scale IoT is that the batteries are

incompatiblewith themassive sale of IoT deployment. It is estimated that nearly 1 billion

batteries need to be replaced every day for potential large-scale IoT deployment. The

use of energy-harvesting techniques is one of the promising alternatives to batteries.On

the other hand, introducing self-powered systems will pave the way for a myriad of chal-

lenges, including the grand challenge of relatively small power generation in most en-

ergy-harvesting modalities. It is necessary to envision an active operating condition for

the electronics, ideally taking advantage of the relatively low power produced by most

energy-harvesting systems. Lowering the power consumption of active operating elec-

tronic systems is a compelling approach that opens up new possibilities for building

electronic devices with low active processing power in the future. We foresee the

following major research issues, and problems should be addressed to completely

enable the large-scale development of self-powered sensing systems based on piezo-

electric, triboelectric, and pyroelectric principles:

� When exploring the vast unexplored space in the field of ML systems based on

piezoelectric sensors, we will find that traditional trial-and-error methods face

numerous challenges. Therefore, informatics-based techniques are considered

promising due to their ability to learn from available data. It is suggested that

to design advanced piezoelectric materials, better encoding processes should

be considered, as well as a combination of theory and data-driven approaches

should be envisaged.201 Future piezoelectric sensor and actuator research

should focus on extracting better functionality from multi-sensor/actuator sys-

tems.202 ML, in particular, plays a critical role in determining measurement ac-

curacy. To demonstrate higher potency, various algorithms with different iter-

ation levels must be evaluated.

� The surface charge generated by contact electrification needs to be greatly

raised to harvest adequate energy for powering many of the typical electronic

gadgets that we use in our everyday lives. As a result, there is still a pressing

need to develop more efficient methods for increasing, decreasing, or control-

ling charge generation via contact electrification.203 In the future, TENG-based

human-machine interfaces will certainly give insight into the harmonious

cohabitation of humans and machines, as well as immersive and efficient inter-

actions in different scenarios.204 The self-powered triboelectric sensors can be

combined with ML to construct wearable real-time health tracking and disease

prediction devices, allowing for early detection of diseases and avoiding inten-

sive care.95,205,206 If more than one such self-powered sensor is deployed, it is

easy to achievemulti-target monitoring as well. However, the reproducibility of

ML in healthcare research is still challenging.207 On the other hand, the grand

challenges lie in adopting, regulating, integrating, standardizing, and updat-

ing these technologies over time.

� As ML expands in various applications, the selected applications like human

motion detections that use pyroelectric sensors and systems face some chal-

lenges. One grand challenge is that accuracy varies depending on the size of

the dataset.135
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Figure 10. Roadmap to foster the market uptake of self-powered intelligent systems
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� Hybrid nanogenerators provide significant advantages in terms of energy scav-

enging and output performance.208 However, toward the use of hybrid nanogen-

erator-based sensors on a broad scale, a list of challenges needs to be addressed.

First, it is inevitable to enhance hybrid generators’ power and their synergic out-

puts through integration.209 Second, the sensitivity of hybrid sensing systems

needs to be enhanced. The confluence of ML techniques and hybrid sensors

can optimize the device’s performance and allow for the accurate detection of

more minute senses. Furthermore, ML techniques can be used to address the

poor linearity of nanogenerators’ output. Hybrid sensing systems with excellent

linearity can offer better sensing capabilities and broaden applications.

Overall, to overcome some technical challenges of self-powered sensors/systems, we

envisage a roadmap to foster the market uptake of self-powered intelligent systems

(Figure 10).

Materials

High-performance and low-cost materials for self-powered sensors and potentially

biocompatible/biodegradable materials need to be explored. The term ‘‘transient

electronics210,211’’ has recently gained popularity, and it is expected that research

in this area will revolutionize the electronic industry and bring viable answers to

e-waste problems by physically degrading devices in specific environments,

including water,212 moisture,213 light,214 or heat.215,216 However, the transiency of

such devicesmust be thoroughly evaluated. For example, implantable bioresorbable

devices would have an impact on the human body and may cause side effects.217

Manufacturing

Currently, active component density in sensing systems is very low compared with

human skin.218 Sensor repeatability and reliability might be problematic when

manufacturing scales up. Furthermore, manufacturing and assembling multimodal

sensors in a compacted form at scale is nontrivial. New processing techniques
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should be explored to fabricate human skin-like self-powered sensors with high den-

sity and low impedance.

Multimodal sensing

Future sensing devices should be multimodal to understand heterogeneous data for

situation awareness, better human-machine interface, and improve prediction

accuracy.219 Conventional wearable electronics are sensitive to both strain and tem-

perature, making them suboptimal for use as artificial multimodal receptors.220 De-

coupled multimodal sensing is one of the recommended ways for achieving multi-

modal sensing on an e-skin by using the same sensory unit to differentiate

physical variables without signal interference.221

Energy management

Novel ML algorithms for self-powered sensors and innovative ML for energy man-

agement in self-powered sensory systems need to be explored. More detailed infor-

mation can be retrieved by matching a specific functional system with the right ML

model.222 There is also a need to develop a model that demonstrates the potential

for intelligent energy management on both micro and macro scales by integrating

ML and big data.

Machine learning

Although ML allows for fast analysis, prediction, and processing in the field of self-

powered sensors, it requires a large dataset, which can often be biased and could

not deliver the right quality. Data acquisition issues can come from both quantity

and quality. The time needed for algorithms to evolve and learn is longer to com-

plete their tasks with an acceptable level of relevance and accuracy. ML often neces-

sitates a large number of resources to function, needing more computing power

when used on a commercial scale. New configurations of ML-embedded self-pow-

ered sensors (or sensing systems) and powering ML units (computing) need to be

considered. The functionality and/or structuralism of biological systems,219,223–225

such as neuroplasticity and neuro-biological architectures, would provide design

principles that can intrinsically address unmet needs in current artificial intelligent

systems. Although massive data and more dimensions of data improve prediction

accuracy, handling massive raw data is difficult. Edge computing nodes should be

considered in the future.226

Evidently, algorithms are optimized for efficiency rather than humanity. We must

ensure that algorithms represent human values and principles as they govern the

future. It is also necessary to ensure that these algorithms are transparent and

accountable so that privacy is respected and human autonomy is maintained. We

here present five grand ethical and security implications of ML systems in real-world

applications (Figure 11). Despite the challenges of ML-based sensing systems, it

paves the way to discover new patterns and trends from diverse datasets, providing

new products and services. It is believed that with the evolution of adaptive ML tech-

niques, the challenges mentioned above can be sorted out.
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Figure 11. Ethical and security challenges to be tackled for ML systems in real-world applications
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