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Fig. 1. Different garments knitted with our workflow. The initial garment specifications come from the popular fashion magazine BurdaStyle and
were reinterpreted using our system to be knitted with a whole-garment knitting machine.

We present a novel workflow to design and program knitted garments for
industrial whole-garment knitting machines. Inspired by traditional garment
making based on cutting and sewing, we propose a sketch representation
with additional annotations necessary to model the knitting process. Our
system bypasses complex editing operations in 3D space, which allows us to
achieve interactive editing of both the garment shape and its underlying time
process. We provide control of the local knitting direction, the location of
important course interfaces, as well as the placement of stitch irregularities
that form seams in the final garment. After solving for the constrained
knitting time process, the garment sketches are automatically segmented
into a minimal set of simple regions that can be knitted using simple knitting
procedures. Finally, our system optimizes a stitch graph hierarchically while
providing control over the tradeoff between accuracy and simplicity. We
showcase different garments created with our web interface.
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1 INTRODUCTION
Textiles are among the most ubiquitous elements of everyday life, as
they constitute our clothing, home decor, personal accessories like
hats and bags, and even deployable structures such as umbrellas
and tents. As a result, textile design is a long-standing, multi-billion
dollar industry that operates at incredible economies of scale.
Among the common textile manufacturing methods (e.g., weav-

ing, sewing), weft knitting offers several advantages. It is an additive
manufacturing method that constructs garments by interlocking
yarn loops using computer-controlled knitting machines. Whole-
garment knitting machines are able to turn yarn into complex 3D
structures in a wide range of shapes, colors, and textures [Spencer
2001; Underwood 2009]. This reduces fabric waste and manual post-
processing, which are common pitfalls of traditional workflows
for woven and knitted garments. Furthermore, the continuously
inter-locking “loop-through-loop” structure makes knitted fabrics
especially deformable and stretchable. Recent advances in manu-
facturing, functional fibers, and computational design have opened
many new opportunities for knitted textiles, including medical sens-
ing, communication, soft robotics, flexible user interfaces, mass
customization of garments, and more [Albaugh et al. 2019; Han and
Ahn 2017; Luo et al. 2021; Ou et al. 2019; Vallett et al. 2016; Wicak-
sono et al. 2020]. However, most of these emerging applications are
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Fig. 2. The segmentation of a sewing pattern for the rightmost pair
of trousers of the teaser figure.

either experimental or inherently small-scale (i.e., personalized) in
nature, so they are severely hindered by the time and expertise re-
quired for state-of-the-art garment design processes. To enable these
endeavors, it is critical to provide efficient, flexible, and intuitive
processes for knitted garment design and manufacturing.

Unfortunately, intuitive design software for whole-garment knit-
ting is still quite limited. Knitting machine manufacturers provide
commercial tools for developing and constructing patterns, but only
a few garment styles are directly accessible in the form of predefined
templates [Shima Seiki 2011; Stoll 2011]. More complex shapes and
non-standard patterns must be hand-designed at the stitch level,
which requires considerable patience and expertise, as shown in the
work of Underwood [2009].

By contrast, cut & sew garment designs are widely accessible and
customizable by designers of varying skill levels. In this common
design pipeline, several flat panels are cut from 2D fabric and then
sewn together along shared seams (see Fig. 2). The 3D structure
of the resulting garment (e.g., curvature, topology) can be arbitrar-
ily complex, but it is fully prescribed by the 2D panel boundaries
and their connectivity. That is, the panels capture the garment’s
3D structure intrinsically. It is appealing to work in this lower-
dimensional panel space because the intermediate (and resulting)
blueprints can be easily edited, and they convey the designer’s in-
tention in a simple, compact, and precise manner. There is also
a rich collection of sewing patterns available online for various
clothing styles (e.g., BurdaStyle, Deer&Do), and customization is
straightforward with existing industrial design software, which
offers short cycles between design and fabrication [Clo3D 2020;
MarvelousDesigner 2020]. However, there is no clear way to de-
sign knits directly via a cut & sew pipeline, because whole-garment
knitting is a time-dependent fabrication process that requires extra
information during the design stage.

In this work, we combine the strengths of whole-garment knitting
and the cut & sew design pipeline. For the garment design phase, we
develop a user interface based on the powerful, low-dimensional rep-
resentation from cut & sew. Then, for efficient garment construction,
we automatically translate the 2D panels into a full garment that
is machine-knittable. Since our approach constructs the garment
and its constituent fabric simultaneously, we can offer additional

control over the interior of each panel, rather than being limited to
the boundary.
This workflow presents several technical challenges. Since knit

fabric relies on sequentially interlocking loops (discussed in Sec. 2.2),
the standard cut & sew panel representation must be augmented
with time and direction information. Moreover, some cut & sew
patterns do not immediately yield machine-knittable garments: in
some cases, the knitting sequence produces undesired artifacts; in
other cases, valid knitting sequences may not exist at all. To allow
users to iteratively refine such designs, our system must offer rapid
inference of the garment’s final 3D structure and computation of
the high-level knitting sequence. However, existing approaches
typically require a full 3D mesh embedding, which can be time-
consuming to create and operate on.

To address these challenges, our computational pipeline operates
exclusively in the 2D domain shown in Fig. 2, which corresponds to
the standard flattened view available in professional garment editing
software. In particular, our computational workflow only relies
on intrinsic surface metrics and local connectivity, thus bypassing
a global 3D embedding (e.g., a 3D mesh) of the desired garment.
Although a 3D preview would still be helpful for designers, our
work shows that all required knitting information can be inferred
and efficiently computed from the intrinsic 2D representation.
Our high-level knitting sequence uses a representation similar

to Narayanan et al. [2018], with a time function over the sketch
manifold that details the relative fabrication order among different
areas of the garment. We develop new ways to solve for the time
information and generate low-level stitch placement and knitting
programs without the use of a 3D mesh. Lastly, to support a wide
range of garment structures, our scheduler provides basic support
for mixed planar and tubular structures, which is a challenging
problem not addressed by previous works.

Our main contributions are:
• a novel workflow that interprets traditional cut & sew gar-
ment patterns into weft knitting machine programs,
• a system that enables interactive editing of both a garment
shape and its knitting time function, and
• a stitch sampling algorithm that provides the user with both
global and local control over the stitch topology.

Our system allows designers to leverage their existing cut & sew
textile knowledge, intuition, and patterns to produce a fundamen-
tally different whole-garment construction. Moreover, by automati-
cally generatingmachine-knittable instructions, ourmethod reduces
the time and manual effort required for physical production. Our
system is accessible as an open-source web interface, available at
http://knitsketching.csail.mit.edu.

2 BACKGROUND AND RELATED WORK
Before discussing the details of our method, we briefly review the
most related prior work on garment design and knitting.

2.1 Garment Design
Interactive physically-based garment design is a challenging prob-
lem of long-standing interest [Volino et al. 2005]. Sketch-based
design pipelines are particularly prominent [Decaudin et al. 2006;
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Igarashi and Hughes 2003; Turquin et al. 2007; Wang et al. 2018],
because the familiar 2D-to-3D approach allows designers to use
their existing experience and intuition. Other works allow designers
to edit the garment directly in 3D space, by sketching the desired
fold pattern of the draped fabric [Li et al. 2018] or directly modi-
fying garment shape [Bartle et al. 2016]. After making the desired
edits in 3D, the corresponding 2D patterns are generated via a
simulation framework that incorporates design constraints. Utiliz-
ing design sensitivity analysis, Umetani et al. [2011] presented an
interactive tool for garment design that allows interactive bidirec-
tional editing between 2D patterns and 3D draped garment shape.
Several methods adjust parametric shape patterns to customize an
existing pattern for specific individuals, such as profile template en-
coding/decoding [Wang et al. 2005], gradient descent method w.r.t.
parametric patterns [Montes et al. 2020; Wang 2018], and learning-
based methods [Guan et al. 2012; Wang et al. 2018]. Berthouzoz
et al. [2013] combine machine learning with integer programming
techniques for automatically parsing BurdaStyle 1 sewing patterns
and converting them into 3D garment models, whereas Shen et al.
[2020] combine sewing patterns and 3D body mesh data using a
Generative Adversarial Network. Finally, Huang et al. [2016] gener-
ate garment models directly from a pair of front and back images. By
contrast, our work transforms sewing patterns into instructions for
garment production on weft knitting machines. Our computational
workflow bypasses 3D mesh generation completely, as intrinsic
metrics are sufficient to describe the knitted garment topology for
manufacturing.

2.2 Knitting
Knitting machines work yarn into a grid of stitches that form a stable
fabric as shown in Fig. 3 left. Continuous yarn is first formed into a
row of stitches, called a course. Each new stitch is created by pulling
a loop of yarn through a pre-existing stitch in the previous course.
The new stitch remains on a knitting needle until it is stabilized
by the formation of a stitch for the subsequent course. The vertical
connections between these stitches form columns, called wales. 3D
knitted surfaces can also be shaped by irregular stitches, such as
increases, decreases, and short-rows. To knit the above stitches, knit-
ting machines only need to perform four basic needle operations—
knit, tuck, split and transfer — and rack, which can shift the back
needle bed laterally as a whole. We refer readers to McCann et al.
[2016] for more detailed information about machine knitting.

Traditional design tools developed by knitting machine manufac-
turers [Shima Seiki 2011; Stoll 2011] work in the construction space
of the machine (called needle×time space), requiring designers to
determine stitch types, connectivity, and construction time and or-
der at the same time. McCann et al. [2016] recognized the lack of
tools for creating intricate and seamless 3D knitted surfaces with a
knitting machine. They presented a design system based on shape
primitives, together with an algorithm that generates low-level in-
structions that can be stored in the Knitout file format [McCann
2017] in a machine-independent way. Later, Kaspar et al. [2019a]
proposed an interactive interface that allows designers to compose
customized knitted garments with simple high-level primitives.

1http://www.burdastyle.com
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Fig. 3. Important knitting concepts: Left, courses and wales as rows
and columns; the corresponding stitch graph whose nodes represent
stitches, and whose edges form the stitch connectivity. Irregular struc-
tures for shaping include the stitch increase with two next wales, the
stitch decrease with two previous wales, and short-rows that only
cover a portion of the base course. Right, each stitch node has one or
two adjacent course neighbors on the same row. The wale neighbors
can be separated into two groups, next wale neighbors and previous
wale neighbors and each stitch can have zero to two neighbors for
each group. The stitch is classified as regular, or (1-1), if they have
exactly one next and one previous wale neighbor, while increase and
decrease are (1-2) and (2-1), respectively.

Others have attempted to construct knitting surfaces from 3D
surfaces directly. Igarashi et al. [2008a,b] first presented a semi-
automatic design assistant that peels the surface with a winding
strip and finds areas where increases or decreases are needed. Stitch
meshes [Yuksel et al. 2012] abstracts different interlocked stitch
structures into different stitch mesh faces. Users are allowed to
explicitly author patterns on the 3D mesh. That work was extended
to support hand knitting [Wu et al. 2019] and to allow conversion
from arbitrary 3D surface automatically [Wu et al. 2018]. Narayanan
et al. [2018] use the stitch mesh’s dual structure, the knit graph, to
represent the knitting structure. Each node in a knit graph represents
two knit loops; the nodes are connected to each other based on
the actual yarn geometry. Narayanan et al. [2018] also proposed
a computational approach that can automatically transform 3D
meshes into machine knitting instructions, while Popescu et al.
[2018] manually segment the complex surface before converting it
into a knit graph. Similar to the knit graph [Narayanan et al. 2018],
we specify the neighborhood (wale and course connections) of each
stitch using a stitch graph (Fig. 3 right).

Recently, Narayanan et al. [2019] also introduced an augmented
stitch meshes framework for machine knitting design, in which
each stitch mesh face is embedded with low-level knitting machine
instructions. Similar to Kaspar et al. [2019a], by modifying how
individual units/faces are interpreted, pattern instructions can be
effectively generated after scheduling. There are also many works
focusing on efficient transfer planning for flat knitting patterns [Lin
et al. 2018], patch-level knitting ordering [Wu et al. 2021], auto-
matic knitting program generation [Kaspar et al. 2019b; Scheidt
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Fig. 4. Summary of our workflow: (a) the user sketches a garment, links its boundaries and specifies time constraints; (b) the corresponding time
function is computed, and its regions segmented; (c) given user sampling preferences (size and course/wale ratios), a stitch graph is sampled; (d) the
user potentially provides additional seam annotations to influence the wale distribution until satisfied; (e) given knitting preferences, a schedule is
generated and the physical artifact can then be knitted.

et al. 2020], and interpreting hand-knitting patterns for knitting
machines [Hofmann et al. 2019]. Although our work extends the
scheduling from Narayanan et al. [2018], we restrict the editing
domain to 2D garment patterns to enable interactive editing of both
the garment shape and its associated knitting time process. We
also introduce additional user constraints and novels user controls,
including simplicity tradeoffs for the optimized stitch graph.

3 WORKFLOW
Our approach hinges on the fact that complex 3D garments can be
partitioned into a set of simple, closed regions that can be embedded
within the 2D plane as in the traditional cut & sew workflow. In
differential geometry, each region of the garment’s 3D manifold is
called a chart, and the 2D embedding is the chart’s image under the
flattening function. For notational simplicity, we use the term chart
to refer to the flattened 2D domain. As in differential geometry, the
collection of 2D charts that fully prescribes a given garment is called
an atlas.
This section provides an overview of our design process for a

given atlas, as illustrated in Fig. 4.

Sketching. The user starts by inputting the desired atlas. Each
chart is specified by its boundary shape, which is given by a closed
poly-Bezier curve. The user can either draw the charts from scratch
or import external SVG files (e.g., from existing cut & sew patterns).

Boundary Linking. Users must also indicate the charts’ intended
connectivity by annotating boundary segments that should be linked
in the final garment. Practically, each Bezier curve along the chart
boundary is a linkable boundary segment. A pair of boundary seg-
ments should be considered linked if they are co-located on the
assembled garment. We restrict the design of the base shape to be
2-manifold so that any boundary segment can be linked to at most
one other segment.

Time Function Specification. Knitting is a time-dependent process.
The time function characterizes many important features about
the garment, i.e., stitches’ locations and course/wale orientations.
The user can design their own knitting time process by specifying
different types of time constraints over the atlas.

Time and Region Computations. Once the user has provided a
linked atlas with the desired time function constraints, our system
automatically solves for the time t over each chart (Sec. 4). Our sys-
tem also provides feedback about the feasibility of the time function
w.r.t. the knitting program space, and reports any notable physical
issues, i.e., excessively large local time stretch which may lead to
yarn breakage. Based on this time function, our system decomposes
the atlas into simple regions (e.g., tubes and sheets) that are straight-
forward to knit (Sec. 5). These often coincide with semantically
meaningful portions of the garment, such as the sleeves, torso, and
yoke of a sweater. These steps are solved at an interactive frame rate,
which allows the user to get continuous feedback as they adjust
their desired shape and constraints.

Stitch Sampling. Once the user converges to a garment specifi-
cation, they set the desired sampling size (from sketch space to
physical units) as well as course and wale sizes. Our system then
constructs a stitch graph that, when knitted, will yield the desired
garment (Sec. 6). The user can further tweak a set of weights to con-
trol the relative tradeoff between the size accuracy of the garment
and the topological simplicity of the final stitch graph.

Scheduling and Fabrication. Given the stitch graph, our system
traces the yarn, schedules needles, and outputsmachine-independent
instructions. This takes into account any user preferences for fab-
rication (e.g., the type of increase stitch to use, and the cast-on/off
procedures), and a list of user-specified stitch programs that map
from stitch to knitting instructions, enabling colorwork and surface
texture. The resulting Knitout file [McCann 2017] can be compiled
for the target knitting machine before actually knitting it.
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Fig. 5. Color visualization of the time function over the back of a
sweater, together with the underlying mesh illustrating the mixed
quad-triangle neighborhoods. Each sample is annotated with a small
tack ⊥ representing the flow direction ϕ. The purple arrowed curves
are flow direction constraints; the light blue curves with orthogonal
arrows are time isoline constraints, with a given flow orientation.

4 COMPUTING THE KNITTING TIME FUNCTION
Given a garment atlas with multiple linked charts, the first com-
putational step is to determine the knitting time over the domain.
In particular, we must determine the order in which the garment
is knit, the orientation of each stitch course (row), and the wale
(column) connections between rows. We define a continuous scalar
field of the time t over the garment atlas to represent when the
knitting process happens locally. The courses align with the time
isoline curves, along which t remains constant. The wale connec-
tions follow the direction of the time gradient ϕ = ∇t/∥∇t ∥. This
direction field should be as smooth as possible, because variations
in the field imply local stretching or contraction between stitches.
Excessive deviations cause visual artifacts and potential failures
during the knitting process, so they must be avoided.
From an optimization perspective, we are seeking a function t

whose gradient is intrinsically smooth, i.e., minimizing∫
M
∥∇ · (∇t)∥2 =

∫
M
∥∆t ∥2 (1)

over the garment atlasM , subject to user constraints (either soft or
hard). The first set of user constraints are direction constraints; these
are curves whose tangents or normals dictate the orientation of the
direction field ϕ. The second set are time equality constraints, which
specify individual time isoline curves. In contrast to Narayanan
et al. [2018], we provide control on intermediate isolines and the
direction field, with an emphasis on interactive editing of the sketch
domain and constraints.

We solve for a suitable t automatically using a series of optimiza-
tions over increasingly fine chart discretizations.

4.1 Discretization
To discretize each chart into a mesh with a given resolution, we first
generate grid samples, which are uniformly distributed throughout
the interior of the chart using a regular grid with spacing ∆s . Then,
we generate a set of boundary samples to capture the boundary of
each chart. These are distributed along the boundary as uniformly
as possible while adhering to several guidelines.

In particular, we always require boundary samples at the start
and end point of each boundary segment. If the boundary segment
is not linked to any other segment, we sample the rest of it using a
uniform arc-length sampling that matches the local grid cell size,
∆s . However, if the boundary segment is linked (i.e., it is co-located
with another segment in the final garment), the linked boundaries
must have a consistent representation that can be used to reconcile
field values across the charts. To ensure this, we require a bijection
between the samples on each linked boundary. Each pair of linked
samples given by this bijection must be co-located in the final gar-
ment. With respect to the final garment, the boundary samples are
distributed according to the larger of the linked charts’ sampling
rates. The spacing of the boundary samples may differ in each local
chart embedding as the edge lengths of linked sketch borders are
not required to match exactly.
The resulting boundary and grid samples are then connected to

their neighboring samples in order to create the mesh over each
chart. On the interior of the mesh, we use quads to connect the grid
samples with their neighboring samples. The more complex bound-
ary region between the interior and the border uses a Delaunay
triangulation, as visualized in Fig. 5.

For the sake of brevity, we introduce the following notation:
• A vertex v refers to some location on the inferred (but never
explicitly instantiated) garment manifold. Eachv corresponds
to one or more samples embedded in the charts.
• L(v) is the set of samples that are images of v within the
charts. L(v) has one element if v corresponds to an unlinked
sample, or more than one if v corresponds to linked samples.
• N(s) is the set of neighboring samples that share an edge
with sample s . All samples in N(s) must belong to the same
chart, and cannot cross any boundary segments (including
linked segments that belong to the same chart).
• C(s) = {c |s ∈ supp(c)} is the set of constraints which s is in
the support of (i.e., c affects s directly).

Every sample s has an associated value for each of the two fields:
the time t(s) and the direction ϕ(s). The quantities associated with
linked samples are independent from one another, but we reconcile
the values to ensure consistency. Both fields are extended over the
entire chart domain by interpolation: linear over sample mesh edges,
barycentric over triangles and bilinear over quads.

4.2 Computing Time and Direction Fields
Our strategy is to successively solve for the direction and time fields
in a coarse-to-fine manner over meshes of increasingly higher reso-
lution to ensure fast convergence. At each level, we solve for the
direction field and integrate to get the time function. To ensure in-
teractivity and fast visual feedback, each optimization is done using
Gauss-Seidel iterations that update the quantity at each sample. The
updates are done first in the interior of the charts, and then along
the border samples. The optimization stops once early termination
criteria are satisfied or the maximum number of iterations have
occurred. Then, the time and direction fields are upsampled for the
next higher-resolution mesh, and the process repeats.

4.2.1 Solving for the Direction Field. We use the normalized direc-
tion averaging strategy of Jakob et al. [2015] to efficiently solve for
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(d) Equivalent views of the bipartite region graph relating
the garment regions and isoline interfaces over time

Fig. 6. Illustration of the steps of our region computation: (a) we start from the time function defined on the garment atlas, (b) we trace a set of
isolines that is sufficient to segment the sketch domain into simple regions to knit, each isoline being further decomposed into different oriented
segments, (c) we create regions on each side of the isoline segments and merge them by following dependency paths along the sketch manifold, and
(d) we create the corresponding bipartite graph with 2-coloring separating nodes into regions and isoline interfaces.

the direction field ϕ (s) at each sample s , namely:

ϕ (s) ←

∑
sN ∈N(s)

wsNϕ (sN) +
∑

c ∈C(s)
wcϕc∑

sN ∈N(s)
wsN +

∑
c ∈C(s)

wc
, ϕ (s) ←

ϕ (s)

∥ϕ (s)∥
, (2)

where wsN = 1/∥p(sN) − p(s)∥ and wc = γc/∥Π(s, c) − p(s)∥ with
γc being a per-constraint, positive, user-tunable weight. ϕc is the
fixed direction that constraint c enforces on s; p(s) refers to the
position of s in local chart coordinates; and Π(s, c) is its Euclidean
projection onto the curve of c . For all samples in the support of hard
constraints, we setwsN = 0.

After each iteration over the full atlas, the directions across linked
samples are reconciled to ensure a consistent solution: the samples
must have the same orientation, but can have either the same direc-
tion (through-flow) or an opposite one (source or sink).
To compare direction vectors across different charts, a common

coordinate system is necessary. Given vertex v , all the linked direc-
tions are rotated into the domain of one of the charts associated
with v . Then, the average orientation is computed and transformed
into individual directions that are rotated back to the local domains
of the corresponding linked samples.

4.2.2 Integrating the Knitting Time. After the direction field has
converged, we iteratively propagate the time over the atlas. On each
iteration, the time is computed by (1) integrating it locally over the
full atlas, (2) enforcing the time isoline constraints, and (3) averaging
the time across linked samples across charts.
Before starting, we select one seed sample sseed with a large

neighborhood to propagate from, and fix its time to be t(sseed) = 0.

Step 1. The time integration uses the converged direction field ϕ
to update the time at vertex v based on its neighbors’ time values:

t(v) ←
1
|L(v)|

∑
s ∈L(v)

1
|N(s)|

∑
sN ∈N(s)

[t(sN) + dt(sN → s)]. (3)

The | · | operator is the set cardinality anddt(sN → s) is the expected
local time difference, computed as the dot-product (·) between the

average direction and the position difference:

dt(sN → s) =
1
2
[ϕ (sN) + ϕ (s)] · [p(s) − p(sN)]. (4)

Step 2. The time isoline constraints are enforced by averaging
the contribution of all samples within their support, and then back-
propagating that average time to the individual samples. We average
the expected time after projecting the samples onto the isoline curve:

t(c) ←
1

|supp(c)|

∑
s ∈supp(c)

[
t(s) + dt[s → Π(s, c)]

]
, (5)

t(s) ← t(c) − dt[s → Π(s, c)]. (6)

Step 3. Finally, the time is averaged across linked samples:

t(v) ←
1
|L(v)|

∑
s ∈L(v)

t(s), then t(s) ← t(v)
��
s ∈L(v). (7)

4.2.3 Termination, Validation & Normalization. For each field, we
measure the variation of the field among the samples inside of the
charts at the end of each iteration I and stop the computation when
it is below a given threshold, i.e., maxs |1 − ϕI (s) · ϕI−1(s)| < ϵϕ
andmaxs |tI (s) − tI−1(s)| < ϵt , respectively. Once the time function
has been solved over our finest resolution sample mesh, the system
checks if any local time extrema are found within the sketches.
If so, the field is deemed invalid and this feedback is provided to
the user. Finally, any source/sink on linked sketch boundaries are
topologically opened. This normalization simplifies the treatment of
boundaries which can now all be viewed as open. The supplement
provides details on both the user feedback and the opening strategy.

5 REGION GRAPH CONSTRUCTION
The next step is to automatically decompose the linked garment into
a minimal set of regions that are simple to knit, such as tubes and flat
sheets, while conforming to the time and direction fields. A simple
region must be knittable using only traditional forms of shaping,
including stitch increases/decreases and short-rows. In particular,
simple regions cannot contain non-trivial topological features like
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Fig. 7. Illustration of isoline tracing: starting from a location (here a vertex), we alternate between the adjacent edges (E) that contain the given
isoline time, and their adjacent faces (F), until we’ve traced the whole isoline domain. Here the color of the mesh visualizes its time function.

splits or merges. The time isolines that serve as interfaces between
a garment’s minimal set of simple regions are called critical isolines.
These critical isolines include all isolines that coincide with:

• a topological split or merge,
• a topological change (from flat to tubular, or vice versa), or
• a boundary of the final garment manifold (e.g., the edge of a
cuff or neckline).

Note that regions may be bounded by some portion of a given
isoline if the isoline coincides with a topological split, merge, or
change, e.g., when joining the sweater sleeves and trunk into the
yoke region in Fig. 6b. Thus, we denote each simple region with a
pair of lower and upper isoline segment sets (Slow,Sup), in which
each setS contains a number of isoline segments {σ0,σ1, . . .} at time
isoline Llow and Lup, with time values t(Llow) < t(Lup), respectively.

We aim to compute the set of critical isolines and simple regions,
along with the knitting time dependency between them. However, it
is difficult to directly extract all critical isolines, as topological struc-
tures are not always apparent from the linked atlas alone. Instead, we
follow the 3-stage process outlined in Fig. 6. Given a time-annotated
garment, we first identify the collection of candidate isolines that are
likely to serve as delimiters between neighboring regions (Sec. 5.1).
Then, we build the directed connections between all simple regions
(Sec. 5.2). Finally, we transform the region and interface dependen-
cies into a directed acyclic bipartite graph (Sec. 5.3).

5.1 Tracing Candidate Isolines
We begin by identifying the set of verticesV from which we should
trace candidate isolines. This includes vertices that are located at
(1) corners (start or end of chart boundary segments), or (2) local
time extrema along their boundary segment. The corner vertices
are where the most common topological splittings and mergings
happen; the time extrema along boundaries capture the remaining
topological events (including flow sources and sinks). Note thatV
is complete, but not all its elements are necessary, e.g., subdividing a
sketch boundary does not necessarily indicate a change in topology.

Beginning from vertex v ∈ V with time t(v), an isoline is traced
by alternating between two operations: (1) from a given neighbor-
hood (vertex, edge, or face), find all adjacent edges that contain
the given time t , and (2) from a given edge, find all faces that are
adjacent to it. This generates a continuous isoline path over the
garment manifold, as illustrated in Fig. 7.

Fig. 8. Examples of separating vertices (■) at the boundaries of the
garment manifold. The central isoline is split into two segments sepa-
rated by vertices that form transitions between being inside the shape
(above each ear flap), and at its boundary (between both ear flaps).
The top isoline surrounds a pointwise sink of the time function, which
was topologically opened.

Any isoline paths that encompass non-trivial topological features
(e.g., topological split, merge, or change) are then subdivided into
multiple segments. The isolines are partitioned at the topologically
critical points, or separating vertices, which are given by one of
two scenarios. In the first case, a separating vertex coincides with
more than two edges of the isoline for time t (as in the armpit of
Fig. 6b). The second case indicates the point at which an isoline path
transitions between being on the interior of the garment manifold
and being on its boundary. This is illustrated by the central isoline
of the beanie, which separates the ear flaps from the main body
in Fig. 8. The isoline is primarily on the garment’s interior, but it
intersects the boundary at each of the two separating vertices (■).
This is interpreted as a topological change over this isoline: the two
lower flat regions merge into the upper circular body region.

5.2 Computing Regions from Dependency Paths
The next step is to uncover the simple regions by inferring the
connectivity between the candidate isolines. Each simple region
must be bounded by two sets of isoline segments — Slow and Sup —
that can be connected along a continuous path through the garment
without passing through any other candidate isoline. Thus, the set
of regions and their extents can be determined by tracing paths
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1

Fig. 9. When a dependency path (blue line) reaches a candidate isoline
at a separating vertex (■), we must take extra steps to determine which
of the incident isoline segments (σup

1 , σup
2 , or σup

3 ) bound the region
in question (blue). We decide this by traversing the triangle fan that
surrounds the vertex, until reaching (or crossing) the nearest candidate
isoline segment in each direction (σup

1 and σup
2 ).

from each isoline segment to its next reachable neighbor, in order
to confirm their local connectivity.
Each isoline segment σi can be associated with at most two re-

gions: its preceding region (for which σi ∈ S
up), and its subsequent

region (for which σi ∈ Slow). Initially, no other members of Slow or
Sup are known, so it is only possible to allocate a partially-known
region for each side of σi . Then, a dependency path is traced from
each lower segment σi , eventually reaching another isoline segment
σj (with t(σi ) < t(σj )). This confirms that the subsequent region
of σi and the preceding region of σj are identical and allows us to
merge them into a single region with the union of the corresponding
isoline segments on either side.
Our system generates dependency paths by following edges of

the mesh in a specific time direction until some isoline segment is
reached. Reaching essentially means that the last edge e of the path
intersects an isoline. This intersection may occur within e or at an
end vertex of e . In the former case, the dependency always indicates
a single isoline segment σj . If the latter case occurs at a separating
vertex v , there may be several incident isoline segments that par-
tition the local neighborhood around v into sectors representing
distinct regions, as shown in Fig. 9. In such a case, the dependency
path only reaches the isoline segment(s) that delimit the sector from
which the path originated.

5.3 Building the Bipartite Region Graph
Armed with the garment’s topological structure, non-critical iso-
lines are filtered out to produce the desired minimal set of simple
regions. The non-critical isolines are those which (1) connect a sin-
gle preceding region to a single subsequent region, and (2) have
topologically identical structures on both sides (i.e., flat to flat, or
circular to circular). Note that both criteria are necessary for prun-
ing. For instance, if an isoline has a single previous and a single
next region but its topology changes (from flat to circular or vice
versa), the isoline is considered critical. Once a non-critical isoline
is removed, its preceding and subsequent regions are merged.

After resolving theminimal set of regions, we construct a bipartite
region graph that represents the final garment decomposition. This
graph has a node set I to represent interfaces (critical isolines),
another node set R to represent each simple region, and a directed
edge set E to connect related isolines and regions. Each directed
edge ei ∈ E corresponds to an isoline segment setSi = {σ0,σ1, . . .}.
Moreover, for a given interface node η, any incident edges in Einη
originate at a preceding region/interface, and those in Eoutη lead to
a subsequent one. This yields the final graph G = ({I,R}, E) as
shown in Fig. 6d. In the supplement, we describe how the user can
interactively control the complexity of this graph so as to prune
excessively small regions.

6 HIERARCHICAL STITCH SAMPLING
In order to generate machine knittable instructions from the region
graph, a stitch graph must be instantiated. Our stitch graph compu-
tation is formulated as a global hierarchical optimization over the
region graph and sketch atlas. Unlike previous works, each phase
of our optimization accounts for both (1) the garment size accuracy
and (2) its topological simplicity. These goals are fundamentally
conflicting, because irregular topologies (shaping or short-rows)
often improve size accuracy, but this typically happens to the detri-
ment of a simple topology (regularity of stitches). Our system solves
optimization problems that allow the user to navigate the tradeoff
between garment size accuracy and topological simplicity. More-
over, our formulation enables the user to interactively control the
wale alignment using seam annotations.

Our optimization approach has multiple stages illustrated in
Fig. 10. First, we optimize the number of stitches at each inter-
face (Sec. 6.1). We then optimize the number of full courses and
short-rows within each region and the number of stitches placed
along each full course (Sec. 6.2). Next, we create all course stitches
with their course connectivity, and optimize the wale connectivity
across the interfaces and within each region, while taking the user’s
seam annotations into account (Sec. 6.3). Finally, we insert short-row
stitches (Sec. 6.4) and convert the final stitch graph into a knitting
program (Sec. 6.5).

6.1 Interface Sampling
To determine the stitch count ni at each edge ei ∈ E within the
bipartite region graph G = ({I,R}, E), we formulate an Integer
Quadratic Programming problem (IQP) with linear constraints:

argmin
n

λcrs
∑
ei ∈E

Ecrs(ni ) + λsmpl
∑

(ei ,ej )∈R

Esmpl(ni ,nj )

s.t. ∀ η ∈ Iinternal,
∑

ei ∈Einη

ni =
∑

ej ∈Eoutη

nj . (8)

The first term Ecrs measures the per-edge course accuracy for the
stitch count ni along ei :

Ecrs(ni ) =
���ni − ωi

Dcrs

���2, (9)

where Dcrs is the expected distance between the center of adjacent
course-connected stitches and ωi is the user’s desired course width,
as indicated by the scaled atlas.
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(a) Interface sampling (b) Region sampling (c) Course connectivity (d) Wale connectivity (e) Short-row Insertion

Fig. 10. Illustration of the steps of our sampling algorithm: (a) optimizing stitch numbers at region interfaces (Sec. 6.1), (b) optimizing course
number, short-row densities and stitch numbers in each region (Sec. 6.2), (c) creating stitch courses (Sec. 6.3.1), (d) pairing stitches between adjacent
courses across interfaces (Sec. 6.3.2) and within regions (Sec. 6.3.3), and (e) generating short-row stitches (Sec. 6.4).

The simplicity term Esmpl penalizes large differences in stitch
counts (ni ,nj ) between the beginning and end of a given region
(ei , ej ) so as to encourage simple regions with minimal shaping:

Esmpl(ni ,nj ) = |ni − nj |
2. (10)

The constraints in Eq. 8 ensure that courses on either side of
an internal interface (i.e., those with Einη , Eoutη , ∅) have the same
number of stitches. The user-specifiedweights λcrs and λsmpl control
the trade-off between course accuracy and simplicity.

6.2 Region Sampling
After optimizing the stitch count n for each of the interface edges,
we optimize the sizing along the wale and course directions, respec-
tively, within each region. All regions can be solved in parallel.

6.2.1 Sizing Along the Wale Direction. To ensure that each region
has the desired measurements along the wale direction, weminimize
an energy penalty for the wale size accuracy across the region. In
particular, we subdivide the region by tracing N isolines uniformly
along its time extents and accumulating the local wale error across
those while accounting for a number of additional short-rows r to
fill the distance in between. The subdivision produces N isoline
segment sets Si ∈ U for N + 1 sub-regions (Si ,Sj ) ∈ A. We
optimize for both the number of subdivisions N and the local short-
rows r between each sub-region:

argmin
N , r

∑
(Si ,Sj )∈A

(
λwaleEwale(Si ,Sj ) + λsrsEsrs(Si ,Sj )

)
, (11)

where the energy term Ewale measures the size accuracy along the
wale direction and the short-row simplicity term Esrs penalizes
adjacent short-row densities that change too fast.
To measure Ewale and Esrs, K sample pairs (si ,k , sj ,k ) are uni-

formly distributed along Si and Sj , respectively. We let rk be the
number of additional short-rows between each sample pair. For
efficiency, our value of K is typically much smaller than the final
number of stitches on the courses. In particular,K is computed based
on the curve lengths ℓ(·) and the distance ∆s between adjacent grid
samples at the finest mesh resolution: K = ⌈max(ℓ(Si ), ℓ(Sj ))/∆s ⌉.

Then, Ewale and Esrs can be defined in a discretized form as follows:

Ewale =
K∑
k=1

���G(si ,k , sj ,k )
Dwale

− 1 − rk
���2, Esrs =

K∑
k=1
|rk − rk−1 |

2,

(12)

where G(si ,k , sj ,k ) is the geodesic distance between samples si ,k
and sj ,k , and the −1 term accounts for the implicit wale step that
happens between Si and Sj .
Full courses are preferable to short-rows wherever possible, as

the latter tend to increase knitting complexity. To enforce this, we
require that at least one sample pair from every sub-region ends up
with no intermediate short-row density– i.e., ∃ k, rk = 0 between
each (Si ,Sj ). By optimizing Eq. 11 subject to this constraint, we bias
the solution toward full-course isolines (large N , small rk ) rather
than relying on short-rows (lower N , large rk ).

6.2.2 Sizing Along the Course Direction. Given the best value of N ,
we optimize for the number of stitchesmi along each Si ∈ U. This
is formulated as a similar constrained IQP problem to that of Eq. 8,
with a tradeoff between course accuracy and simplicity:

argmin
m

λcrs
∑
Si ∈U

Ecrs(mi ) + λsmpl
∑

(Si ,Sj )∈A

Esmpl(mi ,mj )

s.t. ∀ (Si ,Sj ) ∈ A,
⌈
mj/Fmax

⌉
≤ mi ≤

⌊
mj Fmax

⌋
. (13)

The constraint enforces a user-defined maximum shaping factor
Fmax ∈ (1, 2], which limits the rate at which stitch counts can change
between adjacent courses. The bounds on Fmax ensure that stitch
counts can be instantiated into a valid stitch graph, where each
stitch has at most two next wales, and at most two previous wales.
Because the stitch counts ni ,nj at the extents of each region have
already been fixed by the interface sampling step, the value Fmax
also implies a minimum value of N that must be respected for a
given region: Nmin =

⌈
logFmax

[max(ninj ,
nj
ni )]

⌉
− 1.

6.3 Stitch Connectivity
After determining the number of courses and stitches in each region,
stitches are sampled uniformly along their corresponding isoline.
Then, course and wale connections between them are computed to
form an initial stitch graph.

6.3.1 Course Connectivity. Adjacent stitches on the same isoline
segment set are connected first. The process is trivial for singleton

ACM Trans. Graph., Vol. 40, No. 4, Article 63. Publication date: August 2021.



63:10 • Kaspar et al.

sets, as the sequence of neighboring stitches is clear. For multi-
segment sets, it is necessary to determine a course path over the
segments first, to ensure that the stitch sequence is well-defined.
The course path traces a consistently-oriented Eulerian path over
the isoline segments, where the orientation is defined as the sign of
the cross-product between the local displacement and the local time
direction field between two subsequent locations in the same sketch.
The arrows in Fig. 6b illustrate the default positive orientation.

6.3.2 Connectivity across Interfaces. After connecting stitches on
each course within the regions, all regions are connected together
by computing a 1-1 wale assignment between the stitches on either
side of an interface. Our system optimizes for the alignment between
the paired stitches, while enforcing that the adjacent regions have a
valid layout on the final needle bed for scheduling.

A greedy wale distribution approach is used to ensure that any
circular structures sandwiched between other structures end up split
evenly across both knitting beds. For the general case, our system
binds N lower courses to M upper courses. We reduce this to a
pair of simpler interfaces (an N -to-1 interface followed by a 1-to-M
interface), both of which can be solved in a symmetric manner. Our
base case is a course that needs binding toM courses, for which we
greedily search the best 1-to-1 stitch alignment by

(1) selecting an ordering (π )Mk=1 of theM upper courses, then
(2) sequentially searching for the best layout of the course πk ,

which minimizes the geodesic distance between existing stit-
ches after left-to-right packing of courses π1 to πk , and

(3) using the overall best ordering π and its wale assignments.
The left-to-right packing assumes that intermediate circular cours-

es get split evenly between front and back. If more than one inter-
mediate course is circular, it may end up with irregular odd packing
as described in Narayanan et al. [2018]. To avoid this, our system
enforces the optimization in Sec. 6.1 to produce even-parity stitch
counts for any interface ofM > 3 courses.
This approach enables a wide array of practical garment topolo-

gies. However, scheduling constraints can be arbitrarily complex for
intricate garments, and the general case remains an open problem.

6.3.3 Wale Connectivity. To assign the remaining wale connections
between stitches in the region interiors, we extend the Dynamic
Time Warping strategy of Narayanan et al. [2018] with a modified
penalty function Epenalty and apply it between each pair of adjacent
courses independently. Themodified penalty between a source stitch
Ωsrc and a target stitch Ωtrg is defined as follows:

Epenalty = λdist Edist(Ω
src,Ωtrg)

+ λseam
∑

Ω∈{Ωsrc,Ωtrg }

χ (Ω) Eseam(Ω) , (14)

where χ (·) is an indicator of the stitch’s irregularity: χ (Ω) = 1 if Ω
is the source of a 1-2 connection, and χ (Ω) = 1 if Ω is the target of
a 2-1 connection; otherwise, χ (Ω) = 0.
The first term Edist is the normalized squared geodesic distance

between Ωsrc and Ωtrg on the garment manifold:

Edist(Ω
src,Ωtrg) =

(
G(Ωsrc,Ωtrg)

Dwale

)2
. (15)

rk =1rk =0 rk =2 rk =1 rk =0

(a)

rk=1rk=0 rk=2 rk=1 rk=0

(b)

(c) (d)

Fig. 11. Short-row formation by splitting wales: (a) setup with initial
wales and short-row densities, (b) uniform distribution of stitches over
wales, (c) short-row stitch grid given user alignment (bottom), and (d)
the final short-row connectivity.

The second term Eseam is introduced to gather irregular wale con-
nections around the user-specified seam annotations, by penalizing
irregular wales that occur far away from any seam location:

Eseam(Ω) = min (αseam,
∆seam(Ω)

Dcrs
) , (16)

where αseam = ∆s
√
2 is the interaction support of any seam annota-

tions, ∆s is the distance between adjacent grid samples at the finest
mesh resolution, and ∆seam(Ω) is the Euclidean distance between
stitch Ω and the closest seam location in its 2D chart.

After computing the wale connection, users are allowed to further
edit their seam annotations interactively. To incorporate the new
annotations, the wale distribution optimization described above has
to be repeated. To expedites this process, our system preemptively
caches the geodesic distances between each stitch pair Ωsrc and Ωtrg

during the initial pass of the wale connection optimization. This
dramatically reduces the evaluation time for Edist(Ωsrc,Ωtrg). Note
that Eseam(Ω) cannot be cached because the seam distances must be
recomputed with respect to the new annotations, but the Euclidean
distance evaluations are fast enough to support interactive editing.

6.4 Short-row Insertion
After connecting all stitches along full courses, short-row stitches
are inserted according to rk from Eq. 11, which indicates the number
of short-rows to be instantiated between the sampled pair si ,k and
sj ,k . Our system considers each wale connection between full course
stitches (Ωsrc

u ,Ω
trg
u ), and subdivides the wale into ru stitches, as

shown in Fig. 11. Since the number of stitch pairs generally exceeds
the number of sample pairs, the density ru between (Ωsrc

u ,Ω
trg
u )

takes on the value rk from the closest sample pair (si ,k , sj ,k ).
For a 1-1wale connection, thewale is subdivided into ru uniformly-

spaced stitches. The same process applies for 2-1 wale connections,
except stitches are added to bothwales in this manner. For 1-2 wales,
short-row stitches are uniformly placed along the wale path between
Ωsrc and the average location Ω

trg of the two target stitches. The
wale connections from the source up to the upper-most short-row
stitch are 1-1; only the upper-most short-row stitch has a 1-2 wale
connection to the original target stitches.
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Fig. 12. Different vertical alignments: from left to right, bottom,mid-
dle (biased towards bottom) and top.

After the short-row stitches have been inserted within the wales,
they are connected into courses based on a user-defined vertical
alignment in a virtual grid. The contiguous stitches in each row of
the grid get course-connected, forming the final short-row topology.
Our system supports three different vertical alignments (bottom,
middle, and top), as illustrated in Fig. 12.

6.5 Knitting Instruction Generation
To convert the final stitch graph into a knitting program (Knitout
file), our system executes double tracing and scheduling, similarly
to Narayanan et al. [2018]. Unlike previous work, our system also
supports some basic mixed circular/flat layouts, as described in the
supplementary document.
Although the current system focuses on garment shape specifi-

cation, it also supports additional colorwork and textures. In par-
ticular, each stitch graph node is associated with a stitch program,
which specifies a mapping from stitch node to knitting instructions.
A typical program consists in (1) selecting target stitches using
queries similar to Kaspar et al. [2019a], and (2) binding local knit-
ting programs from Narayanan et al. [2019]. See the supplement for
examples of the programs used within our results.

7 RESULTS
All results are knit on a Shima Seiki SWG091N2 machine with
15 gauge needles and a 2/30 1-ply acrylic yarn. They are knit in half-
gauge, with the following size measurements on a tubular swatch:
Dcrs = 300 mm/100 stitches and Dwale = 135 mm/100 stitches.
Most of our garment patterns are created by manually redraw-

ing on top of original patterns selected from BurdaStyle. The only
exception are: the first sweater, which we drew from scratch to
showcase the capabilities of our system and to serve as a simple
introductory design, and the beanie, which is based on the Joyful
baby bear hat from Joy Kelley at howjoyful.com. The supplementary
document contains larger scale versions of these results together
with their respective user parameters, constraints, time function,
region decomposition, stitch graphs, and stitch programs.

Young boy garments. Fig. 13 shows the larger-scale examples we
knitted for a 4-foot-tall boy mannequin, including three garment
pieces. These results verify our pipelines’ ability to scale to human-
sized garments. The primary constraint preventing a full adult-scale
garment is our knitting machine target. Keeping in mind that we
knit in half-gauge, our largest example, the sweater, takes over 309
needles of our knitting machine bed, out of 541 available.

The beanie with earflaps showcases a mixed flat/tubular structure.
Both earflaps use a garter pattern over their entire structure to
avoid curling and folding, which is particularly pronounced with

Fig. 13. Our larger examples on a 4-foot boy mannequin, together
with top-down views of the individual garment pieces and a zoom on
one of the inseam pockets of the trousers which are knit as inside-out
tubular structures merging with the body.

flat Jersey fabric. The upper section uses a fair-isle pattern that is
tiled horizontally and floats the background yarn inside.
The sweater includes partial rib patterns at the wrists, a waffle

pattern at the base of the trunk, and a radial rib pattern for the neck.
It also includes fair-isle colorwork in the center section.

The pair of trousers uses ribs around the waist and garter patterns
on the ankles. The original trousers pattern did not have any pockets.
The inseam pockets on the side of our trousers were added by cutting
and pasting the segmentation of a pair of pockets from a different
garment. This illustrates that multiple existing sketches can be
reused to build more complex ones.

Both the trousers and the shirt exhibit yarn breakage in the armpit
regions unless short-rows are used.

Smaller mannequin garments. Fig. 14 shows the top-down views
of the complex upper garment patterns from the teaser, together
with a visualization of their sketch atlas with linking. They are
scaled to fit on a 16-inch wooden mannequin. All garment patterns
use patterning at their extremities, typically ribs or garter stitch, to
ensure that they don’t curl or fold.
The cardigan is knitted flat from top to bottom, to avoid having

to split the yarn between three sections (front left, front right, and
the back). Splitting can lead to yarn breakage unless each section is
knit in parallel; our scheduler is sequential, so we do not support
this. For the same reason, we do not link the top section, but bind it
manually instead. Since the whole structure is flat, we use a global
garter stitch pattern to prevent it from curling and folding.

The princess dress is knit in two variants. The first version in Fig. 14
is knit as a single piece, showcasing one of the potential advantages
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Fig. 14. On the left: top-down views of the dresses from the teaser; on
the right: their linked sketch atlas. From top to bottom: the cardigan,
the hoodie, the jacket, the princess dress and the turtleneck dress.

of whole-garment knitting. The pleats found in the original pattern
are non-trivial to knit automatically, so we substitute a series of
darts at the interface between the skirt and the body. We attract
irregular stitches to the dart edges via seam annotations, and use rib
patterns above that waist interface to strengthen the visual impact
of the folds. Near the top of the neck and the bottom of the skirt,

Fig. 15. Two-parts version of the princess dress, with manual binding
done with box pleats.

Fig. 16. Illustration of the impact of seam annotations with the cor-
responding irregular stitch placement. The bottom figures show the
corresponding stitch graphs. Darker stitches correspond to irregular
stitches. The left sample has no seam annotation, and we show the
color-coded time visualization on top. The right samples highlight the
seam placements and irregular stitches are attracted to their vicinity.

we showcase different tiled lace patterns. The second version of the
dress, shown in Fig. 15, features the original pleated pattern, which
can be knit in two sections and bound manually.

The hoodie and jacket examples both showcase c-shaped knitting
layouts for which one side of the panels are not linked. The turtleneck
dress was originally opened at the top of the back to make it easier to
put on. However, we closed the opening to simplify its manipulation
given its physical scale.

Seam Placement. Fig. 16 illustrates the impact of the irregular
stitches and how our wale penalty deals with their specific place-
ment. More examples are shown in the supplement. While the lo-
cation of the singular stitches is reasonably clear in such samples,
one limitation of our penalty-based editing is that the wale distribu-
tion is done independently per course pair. Thus, we do not have
any notion of the alignment of irregular stitches across subsequent
courses. Although this global alignment is important in practice, it
is not fully controllable in our system.
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Beanie 2 3 3 13184 0.2 0.1 22.0 1.2
Sweater 2 3 4 47624 0.1 0.1 47.0 5.0
Trousers 12 3 6 57254 0.3 0.2 65.4 5.8
Cardigan 4 3 4 12290 0.1 0.1 6.8 0.0*
Dress 14 2 4 17238 0.8 0.4 29.6 2.1
Hoodie 6 3 5 12874 0.8 0.2 70.9 17.7
Jacket 5 3 4 11252 0.5 0.1 41.2 0.7
Turtleneck 8 3 4 13426 0.8 0.1 26.5 1.6
Shorts 6 2 3 2842 0.1 0.1 8.4 0.6
L trousers 12 3 6 11104 0.2 0.4 19.1 22.5
W trousers 6 3 3 14804 0.6 0.2 23.7 0.4

Table 1. Runtimes using a single computation thread. The column
values correspond either to number counts or time measurements
in seconds. (*) The cardigan layout is fully flat and without complex
branching. This leads to a trivial search space for the scheduler.

Interactive System. Our system is implemented as a web browser
application in Javascript and WebAssembly. The constrained IQP
problems of Section 6 are solved using NLOpt [Johnson 2014] to-
gether with a limited time-budget branch-and-bound strategy. The
geodesic distance is adaptively computed, making use of Geometry
Central [Sharp et al. 2019] for the precomputation, and the exact
geodesic algorithm of Surazhsky et al. [2005] for refinement. The
supplementary document provides implementation details.
Table 1 summarizes the timings of our system for the different

garment results, using an Intel Xeon i7 CPU with 32GB of RAM, as
a single-threaded web worker computation beside the UI thread.

As shown in the first timing column, the time and region compu-
tation all occur in less than a second. The visual feedback for the
knitting time and direction fields can be done in real-time due to
the hierarchical and iterative nature of the computation. In practice,
we throttle it to some fixed frame rate (e.g., 60FPS) as web-worker
transfers induce a noticeable overhead on the total computation.
The second timing column shows that the sampling stages and

scheduling are typically not interactive, unless the examples are
considered at a relatively small scale. Fortunately, the results are
cached after the first pass. This allows the subsequent seam edits to
be made at an interactive framerate until we finally converge on a
design, then generate the schedule and knitting programs. Those
numbers also show high variance because the structure of the input
and its symmetries end up having a large impact on both sampling
and scheduling. For example, the cardigan is scheduled completely
flat and allows for a trivial initial solution that helps the branch and
bound exploration finish very quickly. The supplementary document
provides details on the timing and convergence of each step.

8 DISCUSSIONS
This section highlights some of the design implications of our work-
flow, its limitations, and potential extensions.

Fig. 17. Example of knitting failures due to failing needle transfers:
the left example failed at large decreases above the crotch due to non-
ideal schedule alignments; the right example had catastrophic failures
due to overlapping loop transfers during shaping transfers.

8.1 Scheduling Algorithms
Existing scheduling algorithms [Lin et al. 2018; Narayanan et al.
2018; Wu et al. 2021] either work with tubular or flat fabric, but
not both. To support the scheduling for some of our mixed flat and
tubular designs, we extend the work of Narayanan et al. [2018],
which parameterized the needle bed layout of tubular structures.
We add two different representations for flat structures: single-fold
and c-shaped layouts, further detailed in the supplementary doc-
ument. The main take-away is that scheduling becomes, perhaps
counter-intuitively, harder. Flat structures can be folded in different
ways, and their parameter-varying extents substantially increase
the search space. While some of the structures may appear simpler
locally, their interactions become more complex.

One major issue we encountered with existing schedulers is that
they rely on the assumption that transferring stitches around is fine
as long as excessive slack and unwanted loop overlaps are avoided.
Our experience seems to indicate that large stitch cycle transfor-
mations typically lead to some form of failure (due to transfers).
Similarly, the current general-purpose transfer procedure Collapse-
Shift-Expand [McCann et al. 2016] enforces slack and overlap con-
straints, but allows unrestricted overlapping loop transfers for loops
that have the same target needle. While having a same target needle
is necessary (i.e., for decrease shaping), overlapping loop transfers
are a common source of failure. Fig. 17 shows failure cases caused
by both issues.

We envision that part of the scheduling should be guided by the
user similarly to how our workflow allows control of the directions
and isolines of the knitting time process. Current schedulers have
enabled many applications, but they would be more practical if the
user could interactively manipulate their process.
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Fig. 18. Pleat binding: blue regions are links between the two panels
(in gray), red regions are the intermediate regions to fold / bind off.

8.2 Binding Fabric
In this work, we primarily assume that the binding of garment
panels should be done continuously in a direct manner (i.e., by
following the connectivity from the stitch graph). This provides a
very simple and intuitive support for darts, which our system simply
considers as direct links from one side of the fabric to another (no
fabric is actually cut or folded). However, cut & sew supports various
other means of manually binding pieces of fabric together, including
pleats, ruffles, zippers, or other non-manifold bindings of multiple
fabric layers together.

Of those, pleats are likely the most amenable to automation after
darts. The current workflow is theoretically able to deal with pleats
at least partially: users can bind a larger interface to a small one by
splitting the large one into pairs of linked and unlinked sections that
cover the binding of the smaller one (see Fig. 18). With dedicated
schedules or knitting procedures, one may be able to automate
the folded binding of the intermediate regions. A partially manual
solution is to bind off the intermediate section, which the user
can then fold and link. However, in practice, the main difficulty is
that large changes to the number of stitches without coordinated
increases/decreases lead to excessive stitch rotations and result in
yarn failure during manufacturing.

Another related issue is that of the fabric purpose. In our system,
all sketch charts have the same purpose: composing the apparent
garment shape. However, cut & sew includes various types of fabric
panels, such as lining or facing. Each typically serves a distinct
purpose such as to modify the fabric’s appearance, structure, or
rigidity. When interpreting a garment pattern purely from the shape
perspective, our system would typically discard the additional fabric
panels. By contrast, it would be ideal to account for their intended
function using compatible weft-knitting techniques. For example,
inlay interlocks thread in between wales without creating loops,
which restricts the stretch of the fabric; similarly, stitch patterns can
modify the appearance, texture, and tactile feel of the knit fabric.
Ideally, those would all be customizable properties of the garment
representation.

8.3 Sizing and 3D Preview
Our stitch sampling strategy makes the simplifying assumption that
the number of stitches along courses and wales are sufficient to
describe the garment size through two constants Dcrs and Dwale.
This is a gross approximation and does not account for the impact
of the underlying garment curvature or the impact of different

stitch operations and surface textures. From a design perspective,
we are missing two components: (1) a more accurate simulation of
the size, which would inform the sampling strategy (e.g., through
fast simulation [Leaf et al. 2018; Wang 2018]), and (2) a means to
adjust the desired size along specific target curves directly (either
by optimizing the sketch or the stitch graph), rather than searching
for it iteratively as in the current workflow.
Finally, our system only tackles the intrinsic aspect of knitted

fabric, whereas a full system would benefit from a full 3D garment
preview. Flattened shape editing requires a deep understanding of
the traditional cut & sew workflow and an intuition for how local
pattern editing influences the final shape. A clear next step is to
provide an interactive 3D preview and manipulation alongside the
2D pattern editing capabilities, as is already common in professional
garment authoring software [Clo3D 2020; MarvelousDesigner 2020].

8.4 Finishing and Local Stitch Control
While this work is the first to provide explicit visual control over the
seams induced by the weft knitting process, various other artifacts
are important to consider. Local knitting procedures can have a
large impact on the final appearance or physical properties of the
knitted garment. For example, we found that the type of increase
stitch dramatically impacts the appearance of the irregular stitches
(see supplementary document). Thus we allow the user to select
from different options. Similarly, binding the yarn on and off the
needles can be done in various ways that change the tightness and
appeal of the garment boundary edges. In general, this calls for a
more general framework that can explore those customization capa-
bilities intuitively and possibly select them locally given functional
specifications from the user (e.g., yarn looseness, tension).
Other important classes of details include local stitch patterns

and colorwork. Although we show a proof of concept that our sam-
pled stitch graph can be used to do patterning without requiring
local editing of each stitch, our current solution is far from intuitive
for non-technical users. We envision that these patterns could be
designed graphically by superimposing layers on top of the gar-
ment sketches, while using image stencils or stitch patterns from
libraries [Donohue 2015; Hofmann et al. 2019; Kaspar et al. 2019b]
to induce the stitch-level operations.

9 CONCLUSION
We presented a novel workflow to design garments to be knitted on
industrial weft knitting machines. This permits the design of new
garments from scratch and provides an initial method for adapt-
ing the plethora of existing garment patterns from the traditional
cut & sewworkflow.We envision that our system could be integrated
as part of the flattened pattern editor in existing garment authoring
software, thus enabling a completely digital whole-garment knitting
workflow from an initial sketch to the machine instructions. To fa-
cilitate this vision, we will make available an open-source version of
our system’s prototype. We hope that this will support and inspire
future avenues of research, such as dedicated user-guided sched-
ulers and more intuitive customization capabilities for colorwork
and stitch patterns.
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