
Knitting Skeletons: A Computer-Aided Design Tool
for Shaping and Patterning of Knitted Garments

Alexandre Kaspar
MIT CSAIL

Cambridge, MA, USA
akaspar@mit.edu

Liane Makatura
MIT CSAIL

Cambridge, MA, USA
makatura@mit.edu

Wojciech Matusik
MIT CSAIL

Cambridge, MA, USA
wojciech@csail.mit.edu

Figure 1: Samples of knitted garments designed and customized with our tool, and fabricated on a wholegarment industrial
knitting machine. (A) Various garment prototypes on a 12 inch mannequin; (B) a glove with lace patterns on its palms; (C) an
infinity scarf with noisy lace patterns; and (D) a sock with a ribbed cuff.

ABSTRACT
This work presents a novel interactive system for simple gar-
ment composition and surface patterning. Our approach makes
it easier for casual users to customize machine-knitted gar-
ments, while enabling more advanced users to design their
own composable templates. Our tool combines ideas from
CAD software and image editing: it allows the composition
of (1) parametric knitted primitives, and (2) stitch pattern
layers with different resampling behaviours. By leveraging
the regularity of our primitives, our tool enables interactive
customization with automated layout and real-time patterning
feedback. We show a variety of garments and patterns created
with our tool, and highlight our ability to transfer shape and
pattern customizations between users.

Author Keywords
Computerized Knitting; CAD; Shaping; Patterning

CCS Concepts
•Applied computing → Computer-aided manufacturing;
•Computing methodologies→ Graphics systems and inter-
faces;

INTRODUCTION
Recent advances in textile manufacturing are poised to revolu-
tionize our everyday garments [20], communication capabil-
ities [22], and possibly even our health monitoring [15, 22].
The maker community has also found various applications for
textiles in additive manufacturing [23, 34, 7], made ingenu-
ous uses of programmable textiles [1, 19], and created novel
processes [18] and low-cost machines that target industrial
textile manufacturing [24, 35, 25]. This work is specifically
interested in whole-garment knitting using industrial knitting
machines [27, 29], which provide digital control over each
single loop of yarn being created, while requiring minimal
user intervention during the manufacturing process.

1

ar
X

iv
:1

90
4.

05
68

1v
2

 [
cs

.H
C

]
 3

1
Ju

l 2
01

9

Figure 2: Left: the base stitch unit in black, its course con-
nections in purple, and its wale ones in orange. One can think
of courses as "rows" and wales as "columns". Middle: width
increase by split stitch. Right: width decrease by merging
neighboring stitches using move transfers.

These machines are capable of creating whole garments with
full customization, but unfortunately their programming is
complicated and requires skilled experts. Low-level machine
programs are typically represented as colored needle-time im-
ages (Figure 8) whose pixels are per-needle operations that
get compiled into machine instructions. Existing commer-
cial softwares also provide garment templates with a set of
customizable properties (width, length, etc.) for predefined
shapes (such as gloves, hats, or sweatshirts). However, tem-
plate parameters only modify the garment geometry (known
as shaping); the surface texture and appearance (known as
patterning) must be modified through separate tools, or by
manipulating the local instructions generated from the tem-
plate [27].

Our system unifies and simplifies these existing approaches
within a single workflow, while trying to alleviate two of their
original limitations: (1) existing templates cannot be com-
posed, which limits their potential to a fixed set of predefined
shapes, and (2) these templates lack a bidirectional decoupling
between shaping and patterning, so any alteration of shape
parameters requires recreating the associated patterns.

We propose an interactive system to compose parameterized
knitting primitives similar to knitting templates, while ensur-
ing knittability and allowing continuous user customization
of both garment shape and patterns. The contributions of our
work include:

• A web interface for creating and customizing knitting tem-
plates for everyday garments

• A domain specific language for patterning

• A novel layered pattern representation with different resam-
pling behaviours for decoupling shapes and patterns

Furthermore, we release our web interface and its source code
to allow the democratization of computer-aided knitting. See
the project page: http://knitskel.csail.mit.edu.

BACKGROUND AND RELATED WORK
We begin with a brief overview of knitted fabric and the mech-
anisms of the knitting machine we use to create it.

The smallest unit of knitted fabric is a stitch (as illustrated in
Figure 2). Typically, a stitch is created by pulling a yarn loop
through a pre-existing stitch; this new loop is later stabilized

Figure 3: Illustrations of important components of a V-bed
knitting machine. Top-left: needle beds holding a tubular struc-
ture of yarn across both sides. Bottom-left: a corresponding
top diagram. Right: example of that top diagram as part of our
needle bed visualization.

by having another stitch pulled through it. The neighborhood
of each stitch defines the local topology of the fabric, and must
fulfill certain criteria to prevent the fabric from unravelling.
In this work, we refer to rows of stitches as courses, and
columns as wales. Every stitch has two course neighbors,
except when the yarn starts and ends. Regular stitches also
have two wale neighbors: the preceding stitch it was pulled
through, and the subsequent one that stabilizes it. However,
irregular stitches have more or fewer wale connections due to
increases, decreases, or the yarn’s start and end.

Our system is targeted at knitting garments on weft knitting
machines. In particular, we target V-bed machines1, which
consist of two parallel beds of stitch needles, angled toward
each other in an inverted V shape. Individual needles can hold
multiple loops of yarn in their hook, as illustrated in Figure 3.
They can be actuated as one or multiple carriers bring yarn
over the beds. The main per-needle operations include knit
which pulls a loop of yarn through the current ones, tuck which
adds an open loop in the needle hook, and miss which moves
the yarn without triggering the needle operation. Furthermore,
each needle on a given bed has a counterpart that is directly
across the gap, on the opposing bed; these needle pairs can
perform a loop transfer, which moves a loop from one bed to
the other. Although the needle positions are fixed within each
bed, the lateral offset between the two beds (known as racking)
can be manipulated. Thus, the counterpart of a given needle
can change. By combining racking and transfers, loops are
able to move laterally along the beds. For a detailed review of
how these machines work, we refer the reader to the knitting
reference by Spencer [28], the thesis of Underwood [31], and
the algorithmic review of McCann et al. [16].

Knitting As A Service
Current industrial knitting machines are expensive. Although
maker projects have attempted to create low-cost versions [24,
25], we still would not expect users to own such machines be-
cause they require expertise to operate. Just as manufacturing-
grade 3D printing is generally not done at home but through
a 3D printing service2, this work follows a recent vision of
1This work uses a Shima Seiki SWG091N2 with 15-gauge needles.
2 See https://www.shapeways.com/.

2

http://knitskel.csail.mit.edu
https://www.shapeways.com/

(a) Full time-needle bed layout (b) Compacted layout for local editing (c) Zoom on local yarn pattern

Figure 4: The time-needle bed depicts the knitting process over time. We provide a compact version that collapses suspended
stitches to allow a local composition of primitives instead of the traditional composition over time. By zooming on the layout, we
can inspect the local patterning operations and the simulated pattern flow. Finally, the user can view either side of the garment.

knitting as a service3, in which users send their knitting jobs
to a company, which then ships back their customized knitted
product. This requires a means for the user to specify their
custom-made garment, which motivates our work.

Knitting 3D Meshes
Several early works have tackled the problem of converting a
3D mesh to hand knitting instructions such as for plushes [9,
10]. More recently, Narayanan et al. [17] tackled the automatic
machine knitting of 3D meshes, and posited a theoretical
description of machine knittable structures 4. This description
motivates our shape skeleton.

We avoid the external 3D modeling step, by building a CAD
system for whole garment knitting in the traditional sense,
where we assume modeling is done from scratch. The first
motivation is that the primitives for garment knitting are less
various than the diversity of topologies that can be represented
by general 3D meshes. The second reason is that surface
patterning requires specifying knitting patterns on top of the
shape. Texture mapping could allow this on meshes, but it
introduces several unnecessary challenges [39] and tightly
couples the pattern with the shape. Instead, we seek to decou-
ple shape from pattern; thus, we use a novel layered pattern
representation for general graphs.

Shaping Primitives
McCann et al. [16] built a similar CAD-like approach, with
a language and algorithm for the machine knitting of general
tubular shapes. One of their contributions was the time-needle
bed visualization (see Figure 4), which we build upon. They
also introduced machine knitting building blocks (e.g. sheets,
tubes, short rows), which are manually instantiated onto the
time-needle bed. Our system uses similar building blocks, but
provides automatic bed layout. Additionally, we tackle the
problem of surface pattern customization while allowing the
continuous editing of both shape and pattern.

3 See https://ministryofsupply.com/, https://unless.me/.
4Note that machine knittability, which we require, is more constrain-
ing than hand knittability.

Modeling Garments and Patterns
Multiple works have looked at modeling the garment making
process. Sensitive Couture [30] tackles the specification of
sewing patterns for woven structures. Other works focus on
modeling the yarn directly on top of specialized structures
such as stitch meshes, with applications in realistic rendering
[11, 38]. More recently, these have been translated to hand
knittable structures [36, 37]. We build upon a similar stitch unit
as theirs, but do not use 3D meshes. Instead, we use a multi-
layered 2D embedding that enforces machine knittability and
allows pattern design similarly to image editing. This allows
us to reuse the plethora of manually-codified pattern recipes [6,
4], as well as those directly inferred from images [12].

Parametric Design
Our system takes inspiration from traditional CAD softwares,
together with novel systems that they have inspired. One
example is Robogami [26], which combines custom-made
robot components for easy fabrication. Similarly to the shape-
and volume-authoring tools Antimony [13] and Foundry [33],
we use composable primitives, and a pattern representation
based on short function expressions that can be modified by
the user.

Domain Specific Language
Various Domain Specific Languages have been designed to
tackle dedicated problems, such as shade trees [5] for ren-
dering, or Lindenmayer systems [21] for generating complex
structures. More recently, the Knitout language [16] proposes
a set of low-level instructions and a compiler dedicated to
making machine knitting independent from the machine target.
Another recent set of instructions [12] targets machine knitting
of patterns. We introduce a patterning DSL that employs this
last instruction set within a two-stage process (select + apply)
inspired by the dataset visualization language, D3.js [2].

KNITTING SKELETON OVERVIEW
In this section, we present a typical workflow session, and then
elaborate on several individual components and features of our
system. The following sections detail the shaping primitives
and patterning DSL, before discussing our user feedback and
results. For interactive sessions, please see the project page.

3

https://ministryofsupply.com/
https://unless.me/

index finger

middle finger

ring finger

pinky

4-fingers palm

thumb

palm cuff

Figure 5: Sideways view of a compact glove in our system.
The underlying skeleton graph is highlighted on top, with
tubular sheet nodes in blue and split nodes in fuchsia.

Typical Workflow
Our user starts from a base shape primitive (flat or tubular
sheet) and modifies its shape parameters (e.g. size, layout,
seams) by interactively manipulating them on the time-needle
bed (Figure 4, detailed below). These interactions include
dragging primitive boundaries for sizing, as well as dragging
layout elements to change their location.

The user can also use a contextual menu to directly edit all
exposed properties. In the global context (no shape selected),
users can create new shapes and define user parameters (such
as a glove’s base finger length). While hovering over a shape
primitive, users can rename it, delete it, or edit any of its
properties. Finally, by clicking on a shape boundary (called an
interface), the user can "extend" the given shape by connecting
it to an available interface with valid matching parameters, or
by creating a new primitive (which will automatically connect
to the selected interface, and assume matching parameters).

After creating the desired shape, the user switches to the pat-
tern editing mode, where the toolbar actions affect individual
stitches. In this mode, the user can either (1) draw the desired
pattern directly onto a shape primitive, similarly to a pixel
editing program, or (2) write pattern programs using our DSL
in an editor. As the user zooms in/out, we display varying
levels of information, including the type of pattern operation,
and the local yarn topology (course and wale connections).

Finally, the user can visualize the yarn structure with a force
layout tool, save the resulting skeleton, load a new one, or
inspect and export the necessary machine code.

Shape Skeleton
The recent work of Narayanan et al. [17] showed that any
shape whose skeleton can be drawn on a plane without self-
intersection can be machine knitted. This motivates our under-
lying shape representation, which is a skeleton graph whose
nodes are shape primitives, and edges are connections between
node interfaces, as illustrated in Figure 5. The garment shape
is defined by the node types, connections and parameters. The
final surface pattern is defined by pattern layers associated
with each node, and applied on the stitches locally. Together,
these produce the final knitted structure.

By construction, our shape primitives allow for a continuous
yarn path within each node and across interfaces, thus ensur-
ing knittable skeletons. However, issues can still arise since

Figure 6: Warnings regarding a long-term dependency that
would collapse the yarn (left). By highlighting the conflict
dependencies, the user can more easily fix the pattern (right).

(1) shape parameters across interfaces may be in conflict (e.g.
different widths), and (2) user patterns may produce unsound
structures or put excessive stress on the yarn. We identify such
problems, but we do not fix them, because there is typically
no “correct” solution without knowing the user’s intention. In-
stead, we issue warnings (detailed later), and let the resolution
to the user.

Time-Needle Bed
The main visualization onto which the shape skeleton is com-
posed is the time-needle bed. This is a common representation
for machine knitting [27, 16], illustrated in Figure 4. The
actual bed layout is automatically computed as the user ex-
tends or modifies the underlying skeleton. This representation
has two advantages: (1) it directly shows the time process
followed by the knitting machine, which allows us to produce
interpretable warnings if the user creates undesirable knitting
structures (see Figure 6), and (2) it introduces a grid regularity,
which allows the user to draw complex patterns in a manner
similar to layered image editing.

Yarn Interpretation and Simulation
Our system interprets the yarn path through time to provide
warnings and errors to the user as they create their shape and
combine patterns, as shown in Figure 6. The main issues we
catch are (1) unsafe yarn tension prone to yarn breakage, (2)
too many yarn loops on a needle, risking pile-up or failed
operation, and (3) reverse stitches when the opposite bed is
occupied (e.g. in full-gauge tubular knitting). We provide
feedback both textually with the types of issue and potential
fixes, and visually by highlighting the problematic stitches
together with their conflict dependencies.

We also provide a force-layout graph simulation [32] as an
approximate preview of the yarn deformation after knitting, as
illustrated for a glove in Figure 7.

Low-Level Machine Code
Finally, we provide a view to inspect the low-level code that
is generated for the current layout, as illustrated in Figure 8.
This allows experienced designers and machine operators to
inspect the actual program used by the machine.

4

Figure 7: Force-layout simulation to preview the impact of the
yarn stress forces on the final shape.

Figure 8: Part of the low-level instructions for a simplified
version of the glove, to be processed with KnitPaint [27]. The
x axis corresponds to the needle bed. The y axis corresponds
to time. The center shows individual machine instructions,
and the sides include various options.

SHAPING PRIMITIVES
Each of our three knitting primitives (Sheet, Joint, and Split)
play a specific role in the garment’s final shape. We detail
each primitive and its properties, then provide more details on
our skeleton editing paradigm.

As skeleton nodes, all primitives have a name (for visualiza-
tion and pattern references), a pattern, and a gauge, which
we detail in the next section. All nodes also define a set of
interfaces which can be connected to other nodes.

Sheet / Tube
The Sheet primitive is the base component for knitting any flat
or tubular structure. Its two main parameters are its length,
defining the number of courses making up the sheet, and its
width, defined over the length. While the default configura-
tion is a regular rectangle (sheet) or cylinder (tube), users can
create more interesting shape profiles through stitch increases

and decreases (illustrated in Figure 2). These modulate the
number of stitches on consecutive courses, in order to grow
and/or reduce the shape over the bed. At a high-level, the user
can modulate the width as a piecewise linear function over
the normalized length interval [0;1], yielding non-rectangular
profiles. If desired, the user can also customize the stitch-
level shaping behavior (i.e. placement of stitch increases and
decreases) using one of multiple predefined behaviours, or a
user-provided function that specifies how to allocate wale con-
nections when changing the course width. We provide details
for these functions in the supplementary material, including
examples of how the shaping behaviour affects the appearance
of the yarn with the location of seams. The primitive layout
can be customized by choosing a specific alignment, which
impacts both the bed layout and the yarn stress distribution.
This primitive has two interfaces: the top and the bottom.

width

le
n
g
th

Property Values
Type Flat, Tubular
Length Integer
Width [0;1]→ R>0
Shaping Uniform, Sides,

Left, Right,
Center, Custom

Alignment Left, Right,
Center

Bottom Interface
Top Interface

Figure 9: A tubular sheet, and the table of its properties

Joint
Our Joint primitive captures the second shaping process, called
short rows, which only knit across a subsection of the current
course, while suspending the other stitches. These partial
rows induce bending in the structure, as in a sock heel. A
Joint represents a collection of such short rows. The user can
specify the number of short rows, the width of each, and
their respective alignment. Users can also specify a layout,
which controls the normalized location of short rows along the
interface boundaries, i.e. their offset for flat knitting, or the
rotation for tubular knitting. The interfaces are the same as for
the Sheet primitive.

rows

Property Values
Rows Integer
Width [0;1]→ R>0
Layout [0;1] or "auto"
Alignment Left, Right,

Center

Bottom Interface
Top Interface

Figure 10: Joint primitive as the heel of a sock, and the table
of its properties

5

Split / Merge
Finally, our Split primitive allows for more complicated struc-
tures (like gloves) that require topological branching and/or
merging. It merely consists of a base interface and a set of
branch interfaces. It has a branching degree together with a
branch layout. For automatic layouts, the user can also pro-
vide the branch alignment. Furthermore, for tubular bases,
the branching can be folded (tubular branches) or not (flat
branches) as illustrated in Figure 12. Flat bases only allow
flat branches. Finally, since the interface connections are not
restricted in any direction, this primitive can be used both to
subdivide an interface or to merge multiple interfaces.

degree=2 Property Values
Degree Integer
Layout [0;1]d or "auto"
Alignment Uniform,

Left, Right,
Center

Folded True or False

Base Interface
Branches List[Interface]

Figure 11: Split primitive between one sheet branching into
two, and the table of its properties

Editing Primitive Parameters
Our system allows multiple interaction strategies. One can
work exclusively with the abstract skeleton graph, and edit
parameters using a tabular inspection panel. Alternatively, one
can drag the mouse to interactively extend the shapes on the
bed layout. In this approach, more complicated parameters
can be specified using the contextual menu that allows the
same fine-grained control as the tabular parameter panel.

When specifying parameters through the input panel or the
contextual menu, the user can enter either direct numbers,
or #expressions that introduce global design parameters.
These are global variables that can be reused across different
inputs and node parameters, providing a means to expose
important design parameters (such as a glove’s width or length
scale). For example, the user could specify the length of a
glove finger via (#Len + #LenDelta) which introduces two
parameters, #Len and #LenDelta. Each of these could be
independently applied for the other finger specifications, and
any changes to the variable value would be reflected globally.
These expressions can also refer to node properties with @prop.
For example, the width of a sheet could be made equal to its
length using the expression @length.

PATTERNING
Given a shape skeleton, our system assembles stitches for each
of its nodes, and then merges stitch information at the inter-
faces, producing a stitch graph whose nodes are individual
stitch units (see Figure 2). Initially, the stitch connections
(course and wale) are defined by the shape primitives. Each
stitch also includes a pattern operation that describes how to
modify the stitch with respect to its surrounding neighborhood.

(a) Tubular branches
Folded = True

(b) Flat branches
Folded = False

Figure 12: Diagram illustrating the difference between folded
and non-folded splits for a tubular base across the two needle
beds. The two branches are highlighted with different colors.

(a) Knit (b) Purl (c) Tuck

(d) Miss (e) Move (f) Cross

Figure 13: The different stitch operations with 8×8 pattern
illustrations, both as a diagram and a knitted artifact.

These operations allow the user to design special surface tex-
tures and appearance on top of the shape.

Pattern Operations
For the pattern operations of each stitch, we use the instruction
set of Kaspar et al. [12]. The main difference is that we apply
those instructions not on a one-sided regular grid, but on the
stitch graph, which is then projected back to the time-needle
bed to generate the final low-level machine code. Figure 13
illustrates the types of pattern operations we support.

Importantly, our pattern operations do not create or delete
stitch units. Instead, they modify how individual units are in-
terpreted, either by providing a different operation to the target
needle (purl or tuck instead of the default knit), or by altering
the wale connections (miss, move and cross). In the case of
miss, any previous wale connections of the missed stitch are

6

Category Methods Explanation
Filtering all(), filter(pred) Stitches that match a logic predicate

Sets or(x,y), and(x,y), minus(x,y), inverse() Standard operations on sets of stitches
Indexed wales(rng), courses(rng), select(c, w) Indexed stitches within a range

Neighborhood neighbors(rng), boundaries() Stitches at some distance from selection
Named named(), shape(name), itf(name) Stitches located by a named entity

Masking stretch(grid), tile(grid), img(src) Stitches that match a given grid mask

Table 1: Our categories of pattern queries with their main methods and usage explanation

transferred to the subsequent one. Move and cross operations
change the subsequent wale connection to a neighboring one
along the next course.

If a neighboring wale target does not exist (e.g. at the border
of a flat sheet), then the operation is not applied. Note that
courses of tubular sheets are treated as cyclic, so a neighboring
wale connection always exists (possibly on the other bed). The
system ignores move and cross operations on irregular stitches
(increase/decrease) to ensure structural soundness.

Patterning DSL
To apply pattern operations on the stitch graph, we designed
a domain specific language in which the user first specifies a
subset of stitches of interest – the query – onto which they
can apply a given patterning operation.

Our types of queries are listed in Table 1, and a subset is illus-
trated in Figure 14. The main query is filter, on which all
other queries are based (with some specialized implementa-
tions to improve speed).

Drawing Layers
All our patterns are synthesized using our DSL. We split the
pattern specification into a sequence of layers: (1) an initial
global layer spanning all stitches, (2) varying sequences of
per-node layers modifying stitches of specific nodes, and (3)
a final global layer. By default, all base layers are empty and
we assume the base pattern is a standard knit stitch.

Users can write their own program, use pre-existing ones, or
interactively draw node pattern layers in a manner similar to
image editing softwares that allow pixel-level modifications.
We preview the impact of the patterns on the wales, as illus-
trated in the right of Figures 4 and 6, where move operations
displace the upper wale targets.

Our pattern layers can be exported, imported and resampled
for different shapes and sizes. The resampling behaviour can
be specified by using different types of layers. We provide
three pattern drawing types – singular, scalable and tileable
– whose behaviours are illustrated in Figure 15.

Singular Layers
This is our default drawing mode, which does not resample
the initial pattern, but simply modifies its location to account
for the change in size (e.g., by centering the original pattern).

Scalable Layers
These layers resample their pattern by nearest neighbor resiz-
ing. In this mode, we do not allow cross operations, which are

Initial Range of wales . . . of courses

Area select Union neighbor

img mask tile mask Filter with noise

Figure 14: Illustrations of some of the main pattern queries,
each highlighted on a 30×30 flat sheet.

coupled in paired groups and typically applied with a limited
local range constraint to prevent yarn breakage.

Tileable Layers
These layers resample their pattern by applying a modulo
operation so as to create a tiling of the original pattern.

From Drawings to Programs
Drawings are stored as semi-regular grids of operations, which
can be empty (for no operation, the default). To apply the
drawing, we transform it into a basic program that makes
use of the drawing data together with a resampling function
depending on the type of layer. Singular layers relocate the
drawing information, whereas scalable and tileable layers use
the stretch and tile functions, respectively.

Half-Gauge Knitting
For each primitive, the user can choose a desired gauge (ei-
ther full or half). This property is important because pattern
operations that modify the side of the stitch operation (regular

7

(a) Pattern (b) Singular behaviour (c) Scalable behaviour (d) Tileable behaviour

Figure 15: A base 3×3 pattern and the different resampling behaviours of each of our layer types.

(a) Tubular in full gauge.
width = 10

(b) Tubular in half gauge.
width = 5

Figure 16: Illustration of the gauge parameter. The width is
modified to keep the same bed support. The half-gauge variant
uses different offsets between beds to allow reverse stitches.

vs reverse, or “purl”) can only occur on a given stitch if the
needle directly across from it (on the opposite bed) is empty.
In the case of tubular fabric, the opposite bed holds the other
side, which can lead to conflicts. In such case, half-gauge
knitting is a typical solution, which consists in knitting on
every other needle, with both sides offset such that any nee-
dle’s counterpart on the opposite bed is empty, as shown in
Figure 16. Note that the need for half-gauge depends on both
the shape and the pattern. Even if it is unnecessary, it may still
be desirable because it creates looser fabric. Thus, we do not
automatically choose which gauge to use, but let the decision
to the user. For full-gauge primitives, we detect conflicting
patterns and show a warning to suggest switching gauge.

RESULTS
Our first results explore the range of garments that are machine-
knittable using our shaping primitives. We then consider the
use of our different pattern layers, and their behaviors as node
parameters change.

Span of Shaping Primitives
Our first collection of knitted results is illustrated on the 12
inch mannequin shown in Figure 1, together with adult-size
versions of a patterned infinity scarf and a ribbed sock. We
show the individual pieces in Figure 17, each knitted with a
different yarn color. This includes:

• a hat using one cylindrical sheet with a narrow closed top
and a wide open bottom;

• a scarf with pocket ends, using one main flat sheet and ends
that are split-converted into cylinders (one end is open to let
the other end through, and the other is closed as a pocket);

Figure 17: The individual garment pieces from Figure 1. The
scarf uses a single-sided part that would curl on itself by
default. Thus we used simple 2 by 2 ribs to keep it flat.

• a yoked shirt using one open tube split into three tubes (two
for the sleeves, one for the main body);

• sweatpants as a waist tube with a split branching into two
tubular structures;

• two socks using a joint for the heel and two tubes, one of
which narrows down to the toes where it closes.

Pattern Layers in Action
The top part of Figure 19 illustrates how shape modifications
alter two overlapping patterning layers. The background con-
sists of a tileable layer repeating a sequence of left and right
moves to create lacy holes, whereas the foreground is a scal-
able image mask applying normal knit stitches. As the sheet
size changes, the layers behave differently: the background
keeps tiling the same small move sequence, whereas the cat
foreground expands with the size. The bottom part illustrates
an extension that includes a pure program layer for the mar-
gin, and two complementary scalable foregrounds layers with
different stitch operations (knit and purls).

In Figure 18, we visualize the mesh of a patterned infinity
scarf, which uses a layer decomposition similar to the tiled
lace. However, the tiled lace is applied within a program mask
that makes use of 2D simplex noise to create a random area
selection. Its boundaries are mapped to regular stitches within
2 stitches, and to purls from 3 to 4 stitches away.

8

Figure 18: Visualization of the pattern of our infinity scarf (left) with our mesh visualization (center) and a close-up (right).

Figure 19: Top: impact of shape size on a two-layer pattern.
The holes are tileable moves from Figure 13. The foreground
cat is scalable and stretches with the shape. Bottom: a similar
four-layer pattern with an additional programmatic margin,
and two scalable foregrounds for different shades of a Corgi.

Then in Figure 20 we transfer the global hole pattern to two
nodes of a glove skeleton with open fingers. This figure also
illustrates the potential impact on shaping that some patterns

Figure 20: Patterning the glove for the teaser from left to
right: base shape, cuff in half gauge, half-gauge cuff with a rib
pattern, and final glove with transferred hole pattern on main
palm, as well as an additional pattern for the 4 fingers palm.

have. Here, the cuff of the glove has a constant width that
matches the palm node. The ribbed cuff shrinks considerably
even though it is knitted over the same bed width (in half
gauge). This is the same glove as in Figure 1.

USER EXPERIENCE
To verify that our interface could be used by non-expert users
and receive important feedback, we asked two potential users
without prior knitting experience to use our system.

Procedure
The users were provided a 30 minute introduction to the basic
operations involved in machine knitting, including the notions
of shaping and the types of stitches. We also supplied a few
sample videos of expert user sessions, and an introductory
document for our user interface. We asked them to complete a
few tasks: the first ones about patterning, and the later one for
shape and pattern customization.

Patterning Task
For the first subtask, the users were given a base skeleton with
a single flat sheet, featuring an initial program pattern that
flattens its margins (to prevent the single-sided fabric from
curling up). Their task was to draw some additional patterns
on the sheet.

9

Figure 21: A reference beanie on the left and two customized
beanies on its right. The rightmost one required a few passes
to adjust the lace pattern and its tension.

In the second subtask, we provided examples of lace patterns,
and asked the users to create their own lace involving at least
a few move operations.

For the last subtask, we provided a more complicated template
of a wristband, which is similar to the pocketed scarf in 17.
The users had to import a pattern from their previous subtasks
and apply it on the main part of the wristband. Please see the
supplementary material for these results.

Shaping / Patterning Customization Task
The second task was to customize an adult-size garment of
their choice, given an initial skeleton.

Our users chose to customize a beanie and a glove. For the
beanie, users had to change the shape profile of the top section,
and optionally modify the pattern of the brim or core sections.
For the glove, the goal was to change global, shared design pa-
rameters (finger length and width, and/or cuff length) instead
of directly changing the individual node widths. The corre-
sponding results are shown in Figures 21 and 23. Figure 22
shows a closeup on the laced beanie and its brim.

Feedback and Results
Although none of the users had prior knitting skills, each
one successfully designed sophisticated, machine-knittable
structures that we were able to fabricate. Users were surprised
by their new ability to customize garments, especially larger
ones (e.g., the beanie).

During the design process, users cited a mismatch between
their perception of the garment size (based on our bed visu-
alization), and size of the actual knitted result. This suggests
that, beyond local editing, it may be worth tuning the relative

Figure 22: Beanie closeup showing the main section’s lace
and the curled brim with a knit/purl zigzag.

size of wales and courses to perceptually match that of the real
yarn. However, realistic sizing is an open problem, as current
tension parameters are hand-tuned and must be adapted for
complicated patterns (e.g., changing the tension impacts the
garment size substantially). It will require a better simulation
that takes the yarn tension into account.

Our users generally found the patterning interface intuitive,
as the image editing analogy was sufficiently familiar. Still,
it was difficult for them to reason about the ultimate effect
of complex lace patterns. Eventually, they discovered that
the mesh simulation was more helpful to preview the pattern
impact, and made extensive use of it. They alternated between
the two views (layout and mesh). Furthermore, one user found
that complex skeleton constraints could hinder pattern exper-
imentation. Instead, they preferred to design their patterns
on separate, flat sheets, then import the design onto the final
structure. These behaviours emerged organically.

Although our users were allowed to create new shapes, they
did not actively try to do so in our task setup. This suggests
that non-experts would likely prefer to start from templates.
Our tool might also be valuable for professionals, designers
and other expert users, but we have not validated such cases.

Knittability Constraints
Flat patterns were always knitted successfully on the first try.
However, this was not the case for complex patterns on tubular
structures, such as for the adult-size garments.

We show three result beanies, the right one having required
multiple iterations to work properly. Our machine translation

10

Figure 23: Three glove variants. The green one took multiple
attempts because of the complicated tension requirements
associated with continuous cross patterns.

had very few issues, but some patterns triggered complications
during the knitting process, mainly because of fabric pile-up,
which arises from non-optimal yarn tension.

In the case of the gloves, all fully knitted from start without
pile-up, but we discovered that the sequence of knitting had
some unexpected impact on the yarn. Fingers are typically
suspended on the bed before being knitted over to create the
palm and one user decided to use complex patterns on the
fingers themselves. This led to previous fingers being exces-
sively stretched while suspended, and the yarn locally broke.
Finding the appropriate tension was the main complication
for both the patterned beanie and glove, which required a few
trial-and-error attempts. We show the evolution of the green
glove of Figure 23 in the supplementary material.

DISCUSSION
We first discuss some of our design decisions, and then go over
our system limitations, highlighting potential improvements.

Scope of Our Primitives
By composing three types of primitives (Sheet, Joint and Split),
our design space already spans many common garments in-
cluding varieties of gloves, socks, scarves, headbands, hats,
pants and sweatshirts. The garments which we do not handle
nicely are traditionally sewed garments such as pullovers with
Raglan sleeves or drop shoulders. The general challenge is
specifying continuous interfaces that glue primitives over mul-
tiple courses. We provide further details and an investigation
of potential solutions in the supplementary material.

Smarter Pattern Layers
Our pattern layers are not guaranteed to behave nicely when
resampled or applied to a shaped primitive. A “correct” be-
haviour is often ill-defined: for example, at the top of a verti-
cally striped hat, should the stripes become thinner or merge
together? Thus, it is reasonable to defer to the user in such
scenarios, as we do. A different, recently proposed strategy [8]
would be to adapt calibrated patterns to the local context.

Handling Multiple Yarn Carriers
We do not yet support multiple yarns on the bed at once (e.g.,
for intarsia). However we envision that such specification of
the yarn can be done similarly to our patterning by additionally
introducing a stack of yarn at each stitch. The main modifi-
cation would be that yarn tracing would now also involve the
specification and optimization of the different yarn interac-
tions. This would allow not only intarsia but also functional
fiber routing, yarn inlays, spacer fabric, and pockets.

Large-Scale Interactivity
Our system runs in a browser and can currently remain inter-
active with human-sized gloves, socks and beanies. Patterning
or shaping full-sized sweaters or sweatpants is challenging
because of their scale. Computationally, the garments require
processing a very large amount of stitches. Their size also
presents challenges for user pattern specification, as simple
pixel-based operations are insufficient.

We expect to solve the computational challenge by using hi-
erarchical data structures that do not instantiate all stitches
but only the required information (e.g., at the boundaries or
where the size changes). As for the design issue, we assume
a similar hierarchical process would help. We envision using
meta-patterns on higher-level stitch representations to be in-
stantiated for the machine. Finally, recent patch-level pattern
simulation [14] has shown promising interactive results.

Machine Independence
Currently, our system exports machine code for a set of specific
machine targets (Wholegarment® knitting machines [27]).
However, our design assumptions are that of general V-bed
machines. Since our system uses very regular course struc-
tures, it should be easy to support exporting Knitout code [16],
allowing us to potentially target other V-bed machines as well.

CONCLUSION
We presented a novel interactive system for composing knitted
primitives that encompass a large variety of common garments.
This work also introduced a domain specific language for
patterning, along with novel pattern layers that enable pattern
specification akin to image editing, complete with different
resampling behaviours. Many works follow, including the
support for multiple yarn carriers, which will allow more
complex appearance and functional customization. We are
also interested in optimizing the interactivity using hierarchical
stitch representations, and providing more realistic simulation.

Acknowledgments
We would like to thank James Minor for the help with the
paper and voice-over, Tom Buehler for the video composition,
our external users Tim Erps and Mike Foshey for their time and
precious feedback, as well as Jim McCann and the members of
the Textiles Lab at Carnegie Mellon University for providing
us with the necessary code to programmatically work with our
industrial knitting machine. This work is supported by the Na-
tional Science Foundation, under grant CMMI-1644558, grant
IIS-1409310 and Graduate Research Fellowship 1122374.

11

REFERENCES
[1] Lea Albaugh, Scott Hudson, and Lining Yao. 2019.

Digital Fabrication of Soft Actuated Objects by Machine
Knitting. In Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI EA ’19). ACM, New York, NY, USA, Article
VS01, 1 pages. DOI:
http://dx.doi.org/10.1145/3290607.3311767

[2] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3: Data-Driven Documents. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) (2011).
http://idl.cs.washington.edu/papers/d3

[3] Ann Budd. 2012. Knitter’s Handy Book of Top-Down
Sweaters: Basic Designs in Multiple Sizes and Gauges.
Interweave.

[4] Butterick Publishing Inc. 2016. The Art of Knitting
(Dover Knitting, Crochet, Tatting, Lace). Dover
Publications.

[5] Robert L Cook. 1984. Shade trees. ACM Siggraph
Computer Graphics 18, 3 (1984), 223–231.

[6] Nanette Donohue. 2015. 750 Knitting Stitches: The
Ultimate Knit Stitch Bible. St. Martin’s Griffin.

[7] Nur Al-huda Hamdan, Simon Voelker, and Jan Borchers.
2018. Sketch&Stitch: Interactive Embroidery for
E-textiles. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, 82.

[8] Megan Hofmann, Lea Albaugh, Ticha Sethapakadi,
Jessica Hodgins, Scott Hudson, Jame McCann, and
Jennifer Mankoff. 2019. KnitPicking Textures:
Programming and Modifying Complex Knitted Textures
for Machine and Hand Knitting. (2019).

[9] Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki.
2008a. Knitting a 3D model. In Computer Graphics
Forum, Vol. 27. Wiley Online Library, 1737–1743.

[10] Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki.
2008b. Knitty: 3D Modeling of Knitted Animals with a
Production Assistant Interface.. In Eurographics (Short
Papers). Citeseer, 17–20.

[11] Jonathan Kaldor. 2011. Simulating yarn-based cloth.
(2011).

[12] Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr
Kellnhofer, and Wojciech Matusik. 2019. Neural Inverse
Knitting: From Images to Manufacturing Instructions. In
Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning
Research), Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.), Vol. 97. PMLR, Long Beach,
California, USA, 3272–3281.
http://proceedings.mlr.press/v97/kaspar19a.html

[13] Matthew Keeter. 2013. Hierarchical volumetric object
representations for digital fabrication workflows. ACM.

[14] Jonathan Leaf, Rundong Wu, Eston Schweickart,
Doug L. James, and Steve Marschner. 2018. Interactive
Design of Yarn-Level Cloth Patterns. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2018) 37,
6 (11 2018). DOI:http://dx.doi.org/https:
//doi.org/10.1145/3272127.3275105

[15] Ali Maziz, Alessandro Concas, Alexandre Khaldi, Jonas
Stålhand, Nils-Krister Persson, and Edwin WH Jager.
2017. Knitting and weaving artificial muscles. Science
advances 3, 1 (2017), e1600327.

[16] James McCann, Lea Albaugh, Vidya Narayanan, April
Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica
Hodgins. 2016. A compiler for 3D machine knitting.
ACM Transactions on Graphics (TOG) 35, 4 (2016), 49.

[17] Vidya Narayanan, Lea Albaugh, Jessica Hodgins,
Stelian Coros, and James McCann. 2018. Automatic
Knitting of 3D Meshes. ACM Trans. Graph (2018).

[18] Huaishu Peng, Scott Hudson, Jennifer Mankoff, and
James McCann. 2016. Soft printing with fabric. XRDS:
Crossroads, The ACM Magazine for Students 22, 3
(2016), 50–53.

[19] Hannah Perner-Wilson, Leah Buechley, and Mika
Satomi. 2011. Handcrafting Textile Interfaces from a
Kit-of-no-parts. In Proceedings of the Fifth International
Conference on Tangible, Embedded, and Embodied
Interaction (TEI ’11). ACM, New York, NY, USA,
61–68. DOI:http://dx.doi.org/10.1145/1935701.1935715

[20] Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara,
Mustafa Emre Karagozler, Carsten Schwesig, and
Karen E. Robinson. 2016. Project Jacquard: Interactive
Digital Textiles at Scale. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 4216–4227.
DOI:http://dx.doi.org/10.1145/2858036.2858176

[21] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.
2012. The algorithmic beauty of plants. Springer
Science & Business Media.

[22] Michael Rein, Valentine Dominique Favrod, Chong Hou,
Tural Khudiyev, Alexander Stolyarov, Jason Cox,
Chia-Chun Chung, Chhea Chhav, Marty Ellis, John
Joannopoulos, and others. 2018. Diode fibres for
fabric-based optical communications. Nature 560, 7717
(2018), 214.

[23] Michael L Rivera, Melissa Moukperian, Daniel
Ashbrook, Jennifer Mankoff, and Scott E Hudson. 2017.
Stretching the bounds of 3D printing with embedded
textiles. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. ACM, 497–508.

[24] Gerard Rubio. 2014. OpenKnit: Open Source Digital
Knitting. http://openknit.org. (2014). [Online;
Accessed: 2018-09-01].

[25] Triambak Saxena, Gerard Rubio, and Tom Catling. 2017.
Kniterate: The Digital Knitting Machine.

12

http://dx.doi.org/10.1145/3290607.3311767
http://idl.cs.washington.edu/papers/d3
http://proceedings.mlr.press/v97/kaspar19a.html
http://dx.doi.org/https://doi.org/10.1145/3272127.3275105
http://dx.doi.org/https://doi.org/10.1145/3272127.3275105
http://dx.doi.org/10.1145/1935701.1935715
http://dx.doi.org/10.1145/2858036.2858176
http://openknit.org

https://www.kickstarter.com/projects/kniterate/

kniterate-the-digital-knitting-machine. (2017).
[Online; Accessed: 2018-09-01].

[26] Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei
Zhao, Robin Cheng, Eitan Grinspun, Daniela Rus, and
Wojciech Matusik. 2017. Interactive robogami: An
end-to-end system for design of robots with ground
locomotion. The International Journal of Robotics
Research 36, 10 (2017), 1131–1147.

[27] Shima Seiki. 2011. SDS-ONE Apex3. http://www.
shimaseiki.com/product/design/sdsone_apex/flat/.
(2011). [Online; Accessed: 2018-09-01].

[28] D.J. Spencer. 2001. Knitting Technology: A
Comprehensive Handbook and Practical Guide.
Technomic publishing.
https://books.google.com/books?id=zsoRvDWPd2gC

[29] Stoll. 2011. M1Plus pattern software.
http://www.stoll.com/stoll_software_solutions_en_4/

pattern_software_m1plus/3_1. (2011). [Online; Accessed:
2018-09-01].

[30] Nobuyuki Umetani, Danny M Kaufman, Takeo Igarashi,
and Eitan Grinspun. 2011. Sensitive couture for
interactive garment modeling and editing. ACM Trans.
Graph. 30, 4 (2011), 90–1.

[31] Jenny Underwood. 2009. The design of 3D shape
knitted preforms. (2009).

[32] Vasturiano. 2018. Force-directed graph rendered on
HTML5 canvas.
https://github.com/vasturiano/force-graph. (2018).
[Online; Accessed: 2018-08-22].

[33] Kiril Vidimce, Alexandre Kaspar, Ye Wang, and
Wojciech Matusik. 2016. Foundry: Hierarchical material
design for multi-material fabrication. In Proceedings of
the 29th Annual Symposium on User Interface Software
and Technology. ACM, 563–574.

[34] Anita Vogl, Patrick Parzer, Teo Babic, Joanne Leong,
Alex Olwal, and Michael Haller. 2017. StretchEBand:
Enabling Fabric-based Interactions through Rapid
Fabrication of Textile Stretch Sensors.. In CHI.
2617–2627.

[35] Waag. 2014. Building the OpenKnit Machine.
https://www.instructables.com/id/

Building-the-Open-Knit-machine/. (2014). [Online;
Accessed: 2018-09-01].

[36] Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele
Panozzo, and Cem Yuksel. 2018a. Stitch meshing. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 130.

[37] Kui Wu, Hannah Swan, and Cem Yuksel. 2018b.
Knittable Stitch Meshes. ACM Transactions on
Graphics (2018).

[38] Cem Yuksel, Jonathan M Kaldor, Doug L James, and
Steve Marschner. 2012. Stitch meshes for modeling
knitted clothing with yarn-level detail. ACM
Transactions on Graphics (TOG) 31, 4 (2012), 37.

[39] Cem Yuksel, Sylvain Lefebvre, and Marco Tarini. 2019.
Rethinking Texture Mapping. Computer Graphics
Forum (Proceedings of Eurographics 2019) 38, 2 (2019),
17. to appear.

13

https://www.kickstarter.com/projects/kniterate/kniterate-the-digital-knitting-machine
https://www.kickstarter.com/projects/kniterate/kniterate-the-digital-knitting-machine
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://books.google.com/books?id=zsoRvDWPd2gC
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://github.com/vasturiano/force-graph
https://www.instructables.com/id/Building-the-Open-Knit-machine/
https://www.instructables.com/id/Building-the-Open-Knit-machine/

– Supplementary for –
Knitting Skeletons: A Computer-Aided
Design Tool for Shaping and Patterning

of Knitted Garments
CONTENT
The supplementary material contains:

• Implementation details regarding the process from our
skeleton to machine layout and low-level program
• Implementation details regarding our shaping functions

for specifying the local behaviour of increases and de-
creases in Sheet primitives
• Details about the limitations of our current primitives
• Details about our system’s performance
• Additional results from the non-expert user sessions
• Details about the making of the green glove

IMPLEMENTATION OVERVIEW
We provide a brief overview of our pipeline implementation.
Code will be made available publicly. It borrows ideas from
both Stitch Meshes [38, 36] and Automatic 3D Machine Knit-
ting [16, 17]. The initial input is the user-generated skeleton
as well as a starting interface to knit from. The stages are, in
order:

1. Shape generation: each node is translated into its indi-
vidual set of stitch courses, initial wale connections are
created (but not course connections across courses), and
interface courses are merged across shapes;

2. Course scheduling: connected components are grouped
together, topologically sorted and then a course-by-
course schedule is generated;

3. Yarn tracing: continuity courses are generated, course
connections are generated between distinct courses, cre-
ating the actual yarn path;

4. Pattern application: pattern layers are translated into
their corresponding programs and executed, effectively
assigning a pattern instruction to each stitch;

5. Layout optimization: the node courses are organized
into layout groups, whose offsets and bed sides are opti-
mized iteratively to reduce the stress between stitches;

6. Knitting interpretation: the whole time-needle bed is
generated, and the yarn path interpreted using both associ-
ated pattern instructions and wale connections to generate
sequential per-bed passes (namely cast-on, actions, trans-
fers, cast-off);

7. Knitting simulation: the bed passes are processed to
evaluate potential dangerous yarn situation (large moves,
yarn piling up) and generate appropriate warning or error
messages;

8. Bed Compaction: for visualization purpose, we use an
additional pass in which we compact the knitting bed by
removing some of the suspended stitch beds

9. Code generation: the bed passes are translated into low-
level machine instructions including specialized needle
cast-on and cast-off procedures to prevent yarn from un-
ravelling.

Shape Generation
Each skeleton node is individually transformed into a generic
shape made of a sequence of stitch courses, some of which
are annotated as interfaces (with respective names similar to
that of the skeleton nodes). Each shape’s course is assembled
with its neighboring courses using the node’s shaper program,
layout and alignment properties.

Then all node’s interfaces are processed: connected ones are
bound across shapes, and disconnected ones are either left
as-is or closed if chosen by the user.

At this stage, note that some stitch connections have not
been generated. Notably, course connections across differ-
ent courses require orientation information which depends on
scheduling, happening next.

Course Scheduling
Given the various shapes and their courses, we first groups
them into connected components, and then each group is sepa-
rately scheduled, course-by-course.

The scheduling is done by topologically sorting the courses
according to knitting order constraints: we require previous
branches to be knitted before allowing merge operations in
split nodes.

Yarn Tracing
Given the course schedule, we can now trace the path of the
yarn and generate course connections. This also involves
creating additional continuity stitches so that the yarn doesn’t
jump between far away stitches.

Patterning
At this stage, we have the final stitch graph, and we use our
patterning layers, transforming them into programs that assign
pattern instructions to each stitch.

Layout Optimization
From the course schedule, we generate individual disjoint nee-
dle bed assignments. The offsets and relative sides between
courses of a same node are fixed to optimal assignments with-
out taking other nodes into accounts, creating groups of fixed
bed layouts.

Then, the bed layout groups are optimized w.r.t. each-other’s
offsets and relative sides. The main trick here is that we can
easily pre-compute optimal alignments by approximating the
yarn stress between two full beds by pre-computing their stitch
pairs, as well as their corresponding center of mass, which
should typically align for the minimal stress assignment.

Knitting Interpretation
The time-needle bed is generated by aggregating the layout
groups, and a first pass interpret each bed time, bed after bed,
generating consecutive per-bed passes over time.

14

1 l e t r a t i o = M / N;
2 l e t j 1 = Math . round (i * r a t i o) ;
3 l e t j 2 = Math . round ((i + 1) * r a t i o) ;
4 i f (j 2 == j 1 + 1) {
5 / / i maps t o a s i n g l e c e l l (j 1)
6 i −> j 1 ;
7 } e l s e {
8 / / i s p l i t s i n t o two c e l l s (j 1 and j 1

+1)
9 i −> (j1 , j 1 + 1) ;

10 }

Listing (1) Uniform shaper program

1 l e t d = N − M;
2 l e t o1 = Math . round (M/ 2 − d / 2) ;
3 l e t o2 = o1 + d ;
4 i f (i < o1)
5 i −> i ; / / l e f t p a r t
6 e l s e i f (i < o2) {
7 / / i n c r e a s e s p l i t s i n c e n t e r
8 i −> (o1 + 2*(i−o1) , o1 + 2*(i−o1) +

1) ;
9 } e l s e

10 i −> (i +d) ; / / r i g h t p a r t

Listing (2) Center shaper program

Figure 24: Standard shaper programs: (left) uniform distributes the increases and decreases uniformly, (right) center accumulates
them in the center of the course. Notice the visible seam in the center. At the top are program illustrations for M = 10, N = 14
(these numbers are here for illustration, they vary for every row in a real knitting structure). At the bottom are the bed layouts as
well as the knitted results for a flat triangular sheet.

This generates the following (potentially empty) passes for
each time-step:

• Cast-on: empty needles are cast yarn onto (requires spe-
cialized procedures to ensure the yarn catches, which is
different from typical already-cast knitting);
• Actions: per-needle actions are computed for each stitch

of the current time’s bed according to their number of up-
going wales, their locations, the previous stitch actions,
and their corresponding pattern instruction. Potential
actions include: Knit, Purl, Tuck, Miss, Knit Front/Back,
Kickback Knit, Split Knit;
• Transfers: necessary transfers are processed per-side at

once, with relative orderings specified by the instruction
types (e.g. Cross instructions, Stack instructions);
• Cast-off: stitches that should be cleared off the bed are

cast-off using dedicated procedures to prevent unraveling.

Knitting Simulation
Given the interpretation, the actual knitting process is simu-
lated to discover potential issues due to large yarn stretching
or long interactions between stitch operations (e.g. knit-over-
miss for large miss sections, which ends up collapsing the
yarn, or several loops merging onto one, beyond the needle

knitting capabilities). This produces potential warning and
error messages that the user can use to correct their layout /
parameters.

Code Generation
The bed pass interpretations are translated into low-level ma-
chine instructions, which can then be processed by the machine
(typically re-compiled there to check for further issues and
assign machine parameters before knitting).

SHAPING
In our system, shaper programs allow the user to specify the
wale binding between successive course of Sheet primitives.
Although the main change in shape from such primitive comes
from the difference in course sizes, the local wale connections
have two important impacts:

• They induce visual seams around the change of wale flow
• They impact the stitch stability (and thus can lead to

knitting failures)

A shaper program describes a function which links stitch units
between two consecutive course rows of sizes M and N. Since
the order is not important as we are creating bidirectional
wale connections, we assume that M ≤ N. The program takes

15

Body

Sleeve

Glueing

Figure 25: Illustration of one strategy to glue sleeves to the
main body – here, a Raglan sleeve. The body and sleeves
would both be knitted separately (i.e., next to each other, one
at a time), and then they would be joined with a sequence of
glueing operations joining both sides up to the neck section.

as input M, N, as well as the current index i within the first
course (0≤ i≤M), and potentially other context parameters.
Its output is a (possibly empty) sequence of mappings between
cells of the first course and cells of the second course. For two
courses of same sizes, the simplest mapping is i→ i. Two com-
mon shaping programs (uniform and center) are illustrated in
Figure 24. Given the mapping from the shaping program, our
system then creates corresponding wale connections between
the associated stitch units.

In comparison, systems that build upon meshes such as Au-
toKnit [17] or Stitch Meshes [38, 36, 37] do not directly pro-
vide user control over increases and decreases. Instead, these
are implicitly encoded in the original mesh. Figure 24 shows
that we can use such programs to control the location of seams,
which is of interest when customizing a garment.

LIMITATIONS OF THE SHAPING PRIMITIVES
One constraint of wholegarment industrial knitting machines
is that they cannot instantaneously introduce a new garment
section (i.e. tubular or flat sheets) with a perpendicular wale
flow. Instead, perpendicular wale flows must be joined in a
continuous gluing operation that connects the two suspended
sections laterally, as illustrated in Figure 25.

The current primitives of this work do not support such contin-
uous gluing operation. This notably means that we cannot knit
garments with sleeves extending perpendicularly to the base
trunk. Note that it is quite different from our Joint primitive
whose flow is continuously changed from its bottom to its
top, because it does not split the flow, but only redirect it in a
single direction.

Possible solutions we envision include:

• Adding a specialized T-Junction primitive (although we
are looking for a more general and simpler-to-specify
primitive)

• Introducing lateral interfaces for flat sheet primitives,
which – combined with Joints and Split – would allow
the creation of T-Junction structures (and more)
• Introducing an Anchor primitive that would allow speci-

fying regions on top of current other primitives, to specify
additional interfaces (e.g. hole sections, from which we
could generate new lateral primitives).

Any of these unfortunately comes with many complication in
terms of implementation and layout optimization because we
cannot work with full courses alone and must allow binding
courses to parts of other courses over time (i.e. for the lat-
eral gluing operation). There is also the problem of how the
user would parameterize the gluing process as many variants
exist [3].

PERFORMANCE
The running time for our system is highly dependent on the
client machine and web browser being used. However, we
still provide performance tables here to highlight the current
processing bottlenecks: (1) the stitch instantiation and (2) the
pattern development.

For both issues, we refer to Table 2 where we provide timings
for most of the shape skeletons within the paper, excluding
rendering times. These are captured on 64-bit Ubuntu 16.04
with Intel® Core™ i7-3820 CPU @ 3.60GHz i7 (8 proces-
sors) and 24GB of RAM. The test browser was Chromium
74. To have a reasonable idea of the peak performance, we
ran the profiling by loading the skeleton file, then switching
to Compact mode, and generating the output 7 times consecu-
tively before actually measuring the times we report here. This
warm-up leads the browser to optimize hot functions with its
Just-In-Time compiler. We then export the machine code 3
times before measuring the code generation time.

The compaction time isn’t actually needed except for shapes
using branches (here mainly glove) but our implementation
instantiates a new bed whether there is a need for it (branching)
or not, so the total update times might be smaller in practice if
the user does not toggle bed compaction.

Generally, these timings are not meaningful as absolute num-
bers, but to understand the relative profile of different pro-
cesses w.r.t. different shape complexities. Both shape and
pattern updates have mostly linear runtimes as shown in Fig-
ure 26 for the considered shapes. However, the complexity of
user patterns is of course going to be dependent on the user
pattern. The linear behaviour for pattern development comes
from the fact that filter operations traverse all stitches, and
thus most of our operations end up being linear in that number.

Instantiating Stitches
In the current implementation, we generate the layout from
scratch every time a change happens. This makes our imple-
mentation very simple, but prevents us from reusing most of
the data that doesn’t change. Unfortunately, reusing stitch
information is not easy because simple stitch modifications
can have drastic impacts on the whole needle bed (e.g., adding
a course at the beginning shifts all following stitches). For the
shape part, our system runs mostly linearly in the number of

16

` Skeleton a ` Shape a Pattern ` Layout a ` Yarn a ` Update a Code

Name N
od

es
Pa

tte
rn

s
St

itc
he

s

C
re

at
e

Sc
he

du
le

Tr
ac

e

D
ev

el
op

C
re

at
e

O
pt

im
iz

e
Pa

ck

In
te

rp
re

t
Si

m
ul

at
e

C
om

pa
ct

Sh
ap

e

Pa
tte

rn

To
ta

l

G
en

er
at

e

cat-32x32 1 2 1024 3 1 8 30 4 1 7 6 1 2 33 51 63 27
cat-64x64 1 2 4096 8 1 15 21 3 <1 18 14 1 5 65 62 86 40

glove 10 3 5030 12 1 11 27 6 9 36 24 9 8 116 119 143 46
cat-128x128 1 2 16384 46 <1 70 97 9 1 71 52 9 20 278 259 375 77

sock 6 1 17740 46 <1 50 89 18 <1 70 46 8 34 272 265 361 101
corgy 1 4 19200 22 1 78 129 13 <1 83 60 11 24 292 320 421 76

beanie 3 1 28774 141 <1 79 124 29 1 107 67 7 51 482 386 606 96
noisy-scarf 1 1 85000 199 <1 328 1034 54 <1 309 219 86 140 1335 1842 2369 335

Table 2: Runtime performances of our system for the shapes within the main paper. All times are in milliseconds.

Number of stitches

Up
da

te
 ti

m
e

[m
s]

40

60
80

200

400

600
800

2000

10
00

20
00

40
00

60
00

80
00

10
00

0

20
00

0

40
00

0

60
00

0

80
00

0

Shape Pattern Total

Figure 26: Plot of the update times for the models in the main
paper. Shape update includes the time to rendering, minus the
pattern development. Pattern update includes the time from
pattern development to rendering. Both stitch and time axes
have logarithmic scales.

stitches, and thus we are limited in the size of our garment
shape.

When purely editing the pattern, we avoid recreating the whole
data-structure since the pattern development does not remove
or add stitches. Instead, we clear the stitch operations of all
stitches, and re-apply the patterns, interpretation, simulation
and compaction steps (since these are dependent on both the
shape and the pattern).

Pattern Development
The pattern code evaluation is of course going to be longer to
evaluate the more complex the pattern is. Our DSL implemen-
tation packs all stitches in a linear array and then mainly relies
on filtering the set of indexed stitches for the queries, whereas
the operations are done by traversing the current selected in-
dices and applying the operation on the corresponding stitch
objects. The implementation we provide performance for is
purely CPU-based.

We expect possible improvements through a GPU implementa-
tion that would compile our DSL as shaders or other compute
programs for GPGPU.

ADDITIONAL NON-EXPERT RESULTS
Figures 27 and 28 present additional results from the pattern-
ing task of our non-expert user sessions. Although neither of
our users had previous experience with knitting, both were
able to generate interesting, machine-knittable results within a
few hours of their start with our system.

MAKING THE GREEN GLOVE
The green glove of the last Figure from the main paper went
over a few complicated iterations whose main results are
shown in Figure 29. The initial design was intending to add
gripping texture under the fingers. It was going to do so with
continuously shifted cross patterns. Furthermore, its finger
ends were to be closed with some shaping at their ends.

The first issue arose from the finger ends that had used very
quick increases, with unstable kickback operations next to
future increases. This led to a few holes at the finger tips.
This can be fixed by changing the shaping, but also shows
that one would definitely benefit from being able to manually
specify the expected shaping seams, since then one could route
the yarn correctly and avoid unstable increases. We plan to
automate the detection and fixing of such problems.

The more interesting issue came from the move patterns on
the fingers. The basic glove skeleton we used was starting the
knitting from the fingers to avoid having to split the fingers
into multiple knitting sections. This would have been required
if starting from the cuffs, because a large knitted section is
eventually suspended (the palm), from which smaller branches
extends, one-by-one. In that case, the tension at the boundary
of the branches increases the farther the finger knitting is,
which eventually leads to the yarn breaking.

Typically, this can easily be solved for gloves by starting the
knitting from the fingers. However, one issue is then that the
fingers are kept suspended until the palm can be knitted (i.e.,
all fingers have been knitted). Unfortunately, this means that
patterning the individual fingers with patterns that include
large movements leads to the suspended yarn being stretched

17

Figure 27: Lace patterns generated during our non-expert user sessions. The leftmost pattern was an expert reference that we
provided for inspiration; the center and rightmost designs were novice user results.

Figure 28: The third patterning task required users to transfer an existing pattern onto a provided wristband template. The patterns
were either designed by users in a previous step, or selected from our repository of pre-tested designs. The leftmost column shows
an expert reference; the others were designed by our users.

continuously. This is possible, but ended up breaking the yarn
in random locations with the tension we used.

Instead, our user decided to move the pattern to the main palm,
which solved the issues with the fingers (after also improving
the shape of finger tips to be stable). Unfortunately, knitting
continuous cables over a large area requires a correct tension
parameter. Our initial setup was incorrectly estimating that
the required yarn tension should be very loose (because of the
many cables), but effectively they all combined into small 2×1
shifts, that do not stretch the yarn beyond 2 needle pitches
globally. Having a wrongly loose tension typically leads to
the yarn not catching correctly, and more unfortunately in
it catching onto wrong needles on the sides. This leads to
unpredictable behaviours and eventually led to fabric pile up
(stopping the machine and also breaking a needle during the
clearing process). Fixing the tension led to a completely fine
glove.

This illustrates that although our system can allow users to
create programs for shaping and patterning, there are still
components missing to allow fully automated knitting as a
service. We still require some expertise in how to handle the
tension and other machine parameters, which brings up many
interesting avenues for research.

18

Figure 29: The evolution of the green glove from right to left.

19

	Introduction
	Background and Related Work
	Knitting As A Service
	Knitting 3D Meshes
	Shaping Primitives
	Modeling Garments and Patterns
	Parametric Design
	Domain Specific Language

	Knitting Skeleton Overview
	Typical Workflow
	Shape Skeleton
	Time-Needle Bed
	Yarn Interpretation and Simulation
	Low-Level Machine Code

	Shaping Primitives
	Sheet / Tube
	Joint
	Split / Merge
	Editing Primitive Parameters

	Patterning
	Pattern Operations
	Patterning DSL
	Drawing Layers
	Singular Layers
	Scalable Layers
	Tileable Layers
	From Drawings to Programs

	Half-Gauge Knitting

	Results
	Span of Shaping Primitives
	Pattern Layers in Action

	User Experience
	Procedure
	Patterning Task
	Shaping / Patterning Customization Task

	Feedback and Results
	Knittability Constraints

	Discussion
	Scope of Our Primitives
	Smarter Pattern Layers
	Handling Multiple Yarn Carriers
	Large-Scale Interactivity
	Machine Independence

	Conclusion
	References
	Content
	Implementation Overview
	Shape Generation
	Course Scheduling
	Yarn Tracing
	Patterning
	Layout Optimization
	Knitting Interpretation
	Knitting Simulation
	Code Generation

	Shaping
	Limitations of the Shaping Primitives
	Performance
	Instantiating Stitches
	Pattern Development

	Additional Non-Expert Results
	Making the Green Glove

