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Figure 1: Given arbitrary input images (inset), we compute reliefs that generate the desired images under known directional illumination.
The inputs need not depict real surfaces (left), change in light direction can be exploited to depict different images with a single relief surface
(middle), and if the light sources are colored, even a white surface can generate a given color image (right).

Abstract

We describe how to create relief surfaces whose diffuse reflection
approximates given images under known directional illumination.
This allows using any surface with a significant diffuse reflection
component as an image display. We propose a discrete model for
the area in the relief surface that corresponds to a pixel in the de-
sired image. This model introduces the necessary degrees of free-
dom to overcome theoretical limitations in shape from shading and
practical requirements such as stability of the image under changes
in viewing condition and limited overall variation in depth. The
discrete surface is determined using an iterative least squares opti-
mization. We show several resulting relief surfaces conveying one
image for varying lighting directions as well as two images for two
specific lighting directions.
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1 Introduction

Reliefs are usually created by compressing the depth image of real
3D geometry. This technique has been used for centuries by artists,
and has recently been reproduced digitally [Cignoni et al. 1997;
Weyrich et al. 2007; Song et al. 2007; Sun et al. 2009]. These
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approaches effectively exploit the bas-relief ambiguity [Belhumeur
et al. 1999] in order to predict the image generated by the relief
surface under constant uniform illumination and mostly diffuse re-
flection.

However, the range of images that could be conveyed by a surface
is richer than surfaces obtained with bas-relief ambiguity. In this
work, we define the following more general problem: given an in-
put image (or a set of images) and the corresponding light direc-
tions, we would like to obtain a relief such that its diffuse shading
approximates the input image when illuminated by this directional
lighting. To our knowledge, this is the first work with this goal in
mind.

The theory of shape from shading has considered a similar but dif-
ferent problem: given an observed image that is the result of a single
light source illuminating a scene with mostly diffuse reflectance,
can we recover the depth image? As part of this theory it has been
shown that not every observation can be explained with a constant-
albedo, diffuse surface [Horn et al. 1993]: the radiance of a surface
element depends on the normal relative to the direction of the light
and the viewer, however, the normals of a continuous surface are not
independent – the vector field of normals is necessarily integrable
or irrotational.

Without this condition it would be quite simple to solve the problem
of generating a desired image as the reflection of a diffuse surface
(disregarding interreflection and self-occlusion): if we fix viewing
and lighting directions then each pixel value in the image directly
defines the angle between surface normals and light direction. In
fact, this only exploits one of the two degrees of freedom in each
normal. The remaining degree of freedom could be fixed by con-
sidering a second light direction. Interestingly, it has been shown
that two arbitrary images can indeed be created by a single diffuse
surface for two given directional light sources [Chen et al. 2000].
However, this requires varying albedo because, as mentioned, the
normals of a surface are constrained.

The main idea and contribution of this work lies in a discrete surface
model that effectively alleviates the problem of constrained normals
(see section 3): each pixel is associated not only with one but with
several elements of the surface. Together, the surface elements pro-
vide enough degrees of freedom and the different resulting radiance
values are effectively integrated for realistic viewing distance.

We analyze this approach in section 4 and show that it indeed al-



lows generating two images within a mutual gamut under certain
idealized assumptions. These assumptions are perfect lighting and
viewing conditions and unrealistic machining properties. Asking
for one image to be generated for two different light source direc-
tions makes the relief image stable against changes in lighting. Fur-
thermore, adding smoothness constraints leads to more flexibility
in viewing conditions and easier fabrication.

In section 5 we describe an iterative optimization procedure that
finds a solution to the discrete model with the additional constraints.
Each step in the iterative optimization requires solving a large but
sparse linear system. We also discuss how to control the overall
depth of the resulting relief and how to optimize for two or more
desired images.

We show several results in section 6. When the same image is used
for both light source positions we get relief results that generate
stable images for a wide range of light source directions and view-
ing directions. This is an interesting result, as the images are not
necessarily depicting diffuse surfaces under single light source illu-
mination. We also show that it is possible to generate two different
images with a single relief surface, which can also be used to gen-
erate color reliefs.

We present a rather simple approach, taking into account only direct
shading, but no interreflection, sub-surface scattering, and other re-
alistic shading effects. Consequently, we believe that this is only
the beginning of using surfaces as displays. More discussion and
conclusions are presented in section 7.

2 Related work

Our work is closely related to shape from shading (SFS). Shape
from shading is a classic problem in computer vision with the first
practical algorithms developed by Horn in early 1970s [1970] (see
a survey by Zhang et al. [1999]). Given a grayscale image (or a
set of images) of a scene under a point (or directional) light source,
SFS algorithms attempt to recover surface shape and light source
information. In the most basic version, the surface is assumed to
be Lambertian and the light source location is known. Thus, the
problem settings for this case and our problem setting appear to be
quite similar. However, there are some important differences. In
our case, we deal with arbitrary input images. Our input might not
be a photograph or it might correspond to a scene illuminated by
many light sources, a scene with non-uniform albedo or BRDF and
depth discontinuities. Thus, we do not attempt to recover the actual
scene geometry but merely produce a relief that can induce the de-
sired image. Moreover, an important objective for us is to keep the
depth of the relief small as it is difficult to fabricate surfaces with
large depth variation. Furthermore, we also show how to embed
two images into one relief.

Another set of algorithms related to ours are methods that produce
bas-reliefs [Cignoni et al. 1997; Weyrich et al. 2007; Song et al.
2007; Sun et al. 2009]. In this problem, one starts with in a depth-
map of a three-dimensional model from a particular viewpoint and
the goal is to compress this depth to produce a relief with small
depth variations but which still depicts this model and its shading
faithfully. In bas-reliefs the illumination is assumed to be uniform,
while in our case we optimize for a range of light directions. More-
over, the key difference is that the input to our system is only an
image. We believe that using images as input is much more practi-
cal in most cases.

Finally, our work is also related to Shadow Art by Mitra and
Pauly [2009]. They present an optimization process that uses as
input up to three binary images and computes a 3D volume that
casts shadows that best approximate the input stencils.

Figure 2: The discrete representation of a pixel in the relief and
notation.

3 Discrete relief model of a pixel

We will represent the relief by a discrete surface, fixing the vertex
positions in the plane and only adjusting the heights (i.e. a discrete
height field). A simple counting argument shows that a regular grid
of vertices, associating one quadrilateral element to each pixel, seri-
ously limits the space of images: asymptotically, there is one degree
of freedom per element. This is independent of whether we con-
sider non-planar quadrilateral elements or triangulate each element
to form a piecewise planar surface. The limitation is nicely illus-
trated in the survey by Zhang et al. [1999][Fig. 13–18] by applying
several shape from shading algorithms to images that were not pho-
tographs of diffuse surfaces. Horn et al. [1993] have analyzed the
problem theoretically and give canonical images that cannot be the
result of shading a smooth surface (see Fig. 3 left).

We overcome this limitation by adding an additional degree of free-
dom: each element of the relief surface corresponding to a pixel in
the images is modeled as four triangles forming a square in the pa-
rameter domain (see Fig. 2). The four triangles will have different
normals and, thus, different foreshortening. When viewed from a
distance a human observer will perceive the aggregate radiance of
all four facets. Note that the one additional vertex in the center of
each element adds exactly the one necessary degree of freedom per
element – in this model, each element corresponding to a pixel in
the image offers (asymptotically) two degrees of freedom.

Assume for the moment that two light source directions l0, l1 are
fixed, and two discrete gray level images are given I0, I1 ∈ Rm×n.
We further assume the viewer is distant relative to the size of the
relief, i.e. in direction v = (0,0,1). The goal is to create a discrete
relief surface that reproduces each pixel’s intensity as the integrated
radiance of the corresponding 4 triangles.

Derivation of radiance per pixel. Let the vertices around each
pixel be denoted as

p(x,y) = (x,y,h(x,y)) (1)

and the center vertex surrounded (counterclockwise) by
p(x,y),p(x+1,y),p(x+1,y+1),p(x,y+1) be

pc(x,y) =
(

x+
1
2
,y+

1
2
,hc(x,y)

)
. (2)

We want to compute the radiance of a surface element as viewed
from the v = (0,0,1) direction. First note that the projected area
of all four triangles is 1/4. We denote the cross products of edges



Figure 3: Creation of reliefs for the canonical “impossible” image
(left) from [Horn et al. 1993]: using pyramids we could create a
qualitatively perfect reconstruction of the image (i.e. the gradient
images are almost identical), albeit at the expense of pronounced
pyramid, which cause extreme dependence on perfect viewing and
illumination conditions (center). We suggest to optimize the heights
of vertices and impose smoothness constraints and arrive at the re-
construction shown on the right (which is worse based on compar-
ing the image gradients). The insets show a perspective view over
the surface, illustrating the clearly visible pyramids in the center
image and no visible variation in heights in the right image.

incident on the center vertex as

ñ0(x,y) = (pc(x,y)−p(x,y))× (pc(x,y)−p(x+1,y))
ñ1(x,y) = (pc(x,y)−p(x+1,y))× (pc(x,y)−p(x+1,y+1))
ñ2(x,y) = (pc(x,y)−p(x+1,y+1))× (pc(x,y)−p(x,y+1))
ñ3(x,y) = (pc(x,y)−p(x,y+1))× (pc(x,y)−p(x,y))

(3)

and then their lengths as

ni(x,y) = ‖ñi(x,y)‖, i ∈ {1,2,3,4}. (4)

With this notation the reflected radiance of the surface element
L(x,y) illuminated by a light source l is

L(x,y) =
4

∑
i=1

1
4
· ñi(x,y)T

ni(x,y)
l =

1
4

(
4

∑
i=1

ñi(x,y)
ni(x,y)

)T

l. (5)

It is important for the optimization procedure we describe later that
ñi is a linear function of the heights {hi},hc – we have deliberately
put the non-linear part of the radiance function into the lengths ni.
For ease of re-implementation, we write out the linear equations for
the radiance in terms of the variables {hi} and hc relative to a light
direction l = (lx, ly, lz):

1
2 (lx + ly)

(
1
n1
+ 1

n4

)
1
2 (−lx + ly)

(
1
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+ 1

n2

)
1
2 (−lx− ly)

(
1
n2
+ 1

n3

)
1
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(
1
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+ 1

n4

)
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(

1
n2
− 1

n4

)
+ ly

(
1
n1
− 1

n3

)



T
h(x,y)

h(x+1,y)
h(x+1,y+1)

h(x,y+1)
hc(x,y)

+lz
4

∑
i=1

1
ni

= 4L(x,y)

(6)

In Fig. 3 we illustrates how much flexibility can be gained from us-
ing pyramid shaped elements. As the input image we use a canon-
ical impossible image example by Horn et al. [1993]. Then we
show what was possible if we used arbitrary pyramids for the recon-
struction. Unfortunately, the resulting variation in height makes the
result unstable under even slight changes in viewing direction, as
many of the triangles are at grazing angles with the light sources. In
addition, it would be difficult to machine the surface with common
tools. Because of these problems we impose additional smoothness
constraints (see the following sections).

4 Analysis and consequences of practical re-
quirements

In this section we analyze what radiance values can be generated
with our geometric model for a pixel. The additional degree of
freedom in each pixel suffices to control the radiance per pixel, in-
dependently of other pixels. With two degrees of freedom per pixel
it could be possible to select independent radiance values for two
different light source directions. However, we show that the gamut
of radiances for an individual pixel is limited, even under idealized
assumptions. In other words, if the images are supposed to differ for
different illumination their dynamic range will be limited; a large
dynamic range can only be achieved for similar or identical images.

Then we analyze consequences for real life conditions. Most im-
portantly, the viewing position cannot be controlled and, thus, the
image cannot be too sensitive against changes in viewing direction.
We show that the derivatives of the height field are directly related
to the stability of the image under changes in viewing direction.
This will lead to smoothness terms in the surface optimization.

Our discussion complements the analysis in the shape from shading
literature [Zhang et al. 1999]. We focus on the properties of the
output regardless of the input and, in particular, input that cannot
be the result of shading a real surface.

4.1 Radiance gamut for two light sources

Assume two fixed light source directions l0 and l1. Moreover, the
direction towards the viewer is v = (0,0,1) and the relief surface
is in the xy-plane. Our goal is to create a surface element that gen-
erates two different radiance values when it is illuminated by two
different directional light sources. We restrict the analysis to a pla-
nar surface patch (i.e. a triangle) as the radiance for the pyramid is
a convex combination of the radiance for the 4 triangles. The prob-
lem of generating two arbitrary radiance values for the two light
directions is equivalent to finding a solution for a surface normal n
that satisfies the following two equations:

M0 = nTl0 M1 = nTl1. (7)

Geometrically, the pairs M0, l0 and M1, l1 define two cones of revo-
lution with axes l0 and l1. The intersection of these cones results in
0, 1, or 2 surface normals. In practice, we only consider the parts of
the cones that have positive z-component, as any solution n needs
to point towards the viewer. Under these conditions the subspace of
possible radiance values in both images M0×M1 = [0,1]2 that per-
mits at least one solution for each surface normal n depends on the
directions of the light sources. However, we observe that it is nec-
essarily a strict subset of [0,1]2. For example, if one pixel requires
M0 = M1 = 1 this would lead to n = l0 = l1). In other words, there
is no configuration that would allow reproducing any two arbitrary
images. Fig. 4 illustrates several achievable radiance gamuts for
a few different light configurations. Note that the radiance gamut
depends only on the angle between the light sources. Intuitively,
achieving pairs of bright values requires the light sources to have
similar direction. This comes at the expense of limiting the maxi-
mum difference between the corresponding radiance values in both
images.

4.2 Sensitivity to changes in viewing direction

We also would like be able to view the generated reliefs from arbi-
trary positions. This violates our initial assumption that the viewer
is at v = (0,0,1). As we relax the assumption on the viewing di-
rection, the observed radiance at a pixel will vary as the viewer
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moves due to changes in projected areas of the facets. More pre-
cisely, while the reflected radiance of each triangle is of course in-
dependent of the viewing direction, its projected area changes with
the viewing direction; thus, if neighboring triangles within a pixel
have different normals, their combined radiance will now be view-
dependent. Consequently, we wish to analyze how radiance values
change as the observer departs from the ideal viewing direction.

Consider the triangle (0,0,h0),(1,1,hc),(2,0,h1) (we have scaled
the coordinates by a factor of two for convenience of notation). The
cross product of two edge vectors (h0�h1,h0 +h1�2hc,2)T is or-
thogonal to the plane containing the triangle and has length propor-
tional to the area of the triangle. The projected area of the triangle
along the direction v = (vx,vy,vz) is proportional to the scalar prod-
uct

vx(h0�h1)+ vy(h0 +h1�2hc)+2vz. (8)

Thus, a small deviation along vx behaves as h0� h1 and along vy
as h0 +h1�2hc. This means, the change in area due to changes in
viewing position away from the assumed direction orthogonal to the
surface depends on the difference in height values (or the gradient
of the height function). For small gradients the radiance is constant
under small changes in viewing positions, while for larger gradients
the radiance changes linearly with the viewing position.

As mentioned, this change in area is only relevant if it occurs at dif-
ferent rates for neighboring triangles. If all four triangles in a pixel
have similar slope, the change in area will be similar and there will
be no perceivable change in radiance for this pixel. On the other
hand, if the slopes are different, the areas might change differently
and the combined radiance would also change. Consequently, it is
important that second order differences within a pixel are small; or,
put simply, that each pixel is rather flat.

As we can see, the geometric pixel model we are proposing over-
comes the limited set of images that can be represented by diffuse
surfaces at the expense of sensitivity to viewing direction. The opti-
mization procedure described in the next section allows trading off
between these goals.

5 Optimization

The overall goal of the optimization process is to compute a sur-
face model whose diffuse shading reproduces the desired image or
images for given directional light sources. In this optimization pro-
cess, we minimize the squared difference of radiance gradients and
the corresponding input image gradients. We also add smoothness
and damping terms based on the analysis described in section 4.
Next, we derive each of the error terms. Then, we describe in more
detail the optimization procedure.

Radiance term. As discussed in the previous section the dynamic
range of shading produced by relief surfaces is quite limited. There-
fore, it is desirable to tone map the input images as a preprocessing
step. We use the image gradient compression method similar to
approaches by Fattal et al. [2002] and Weyrich et al. [2007]. We

denote the compressed image gradients as:

Db
x(x,y) =C

(
Ib(x+1,y)� Ib(x,y)

)
Db

y(x,y) =C
(

Ib(x,y+1)� Ib(x,y)
) (9)

where C is a function that compresses the value of its argument. In
our experiments we have used

C(a) = sgn(a) · 1
αd

log(1+αd |a|) , (10)

similar to the depth compression function used by Weyrich et
al. [2007].

The gradients of radiance values for the relief illuminated by the
light source lb are denoted as Lb

x(x,y) and Lb
y(x,y). They can be

derived simply by taking finite differences of Equation 5 among
neighboring pixels:

Lb
x(x,y) = Lb(x+1)�Lb(x,y)

Lb
y(x,y) = Lb(y+1)�Lb(x,y).

(11)

Given these definitions, we minimize the squared differences be-
tween radiance gradients and corresponding compressed image gra-
dients:

Eb
x (x,y) = wb

x(x,y)
(

Lb
x �Db

x(x,y)
)2

Eb
y (x,y) = wb

y(x,y)
(

Lb
y �Db

y(x,y)
)2

.

(12)

Note that we use weights wb
{x,y}(x,y) that depend on the light source

direction, the gradient direction, and the position. We will discuss
the choice of these weights later. The global energy for fitting the
gradients of the input images is then:

Eb
g =

m�1

∑
x=1

n

∑
y=1

Eb
x (x,y)+

m

∑
x=1

n�1

∑
y=1

Eb
y (x,y) (13)

Smoothness and height control. As discussed in section 4.2 it
is also important that each pixel is close to flat. This can be achieved
by minimizing the second order differences within a pixel. For
center vertices, this term is expressed using a sum of their squared
Laplacians:

Ec =
m

∑
x=1

n

∑
y=1

(
h(x,y)+h(x+1,y)+

h(x+1,y+1)+h(x,y+1)

�4hc(x,y)
)2

(14)

Intuitively minimizing this term pulls each center vertex towards the
mean height of its neighbors. However, moving the center vertex
to the mean height is not enough to keep the geometry of a pixel
planar. It is also necessary to consider the second order smoothness
of corner vertices of each pixel. This term for all pixels can be
expressed as:

Ep =
m

∑
x=1

n

∑
y=1

(
h(x,y)�h(x+1,y)+

h(x+1,y+1)�h(x,y+1)
)2

.

(15)



Lastly, we penalize large height values. We add another term that
ensures the resulting heights are close to desired heights h∗(x,y) :

Eh =
m

∑
x=1

n

∑
y=1

(
h(x,y)�h∗(x,y)

)2
. (16)

We discuss the choice of the desired heights h∗(x,y) later. We also
note that a similar energy for center vertices is not necessary, as the
height of these vertices is locally constrained.

Minimizing the energy. The overall energy including the
weights for the regularization terms can be expressed as follows:

E = E0
g +E1

g +wcEc +wpEp +whEh. (17)

Our optimizations relies on the assumption that the overall height
of the desired relief should be small as discussed in section 4. The
main difficulty in optimizing the energy terms is due to the non-
linearity of Lb(x,y). This expression is non-linear because of its
components ni that denote the lengths of the cross products ñi cor-
responding to the areas of the triangles forming pixels. However,
following the discussion on sensitivity to viewing direction we ex-
plicitly keep the change in these components small by means of
Equations 14 and 15. Exploiting this damping, we model the {ni}
as constants in each step of an iterative optimization process. This
means that the gradient of (12) becomes linear.

The choice of h∗(x,y) depends on the application scenario. In some
cases the desired heights are provided as discussed in section 6. If
they are not given then the heights are damped only as they get too
large. In practice, for small heights we set h∗(x,y) to h(x,y), which
allows the heights to vary over the iterations. For large heights, we
reduce their values after each iteration. In particular, we have found
that using a compression function similar to (10) and repeatedly
setting

h∗(x,y) = αh log(1+αhh(x,y)) (18)

works well in practice.

The complete optimization method can be described as follows.
In each step we set the linearized gradient of the energy to zero.
This corresponds to solving a sparse linear system for the unknown
heights. Then we update the constants {ni} and {h∗} and repeat the
steps. This procedure typically converges in a few iterations (5-10)
when the constraint enforcing small height variation permits a solu-
tion. If no solution with small height variation is possible then the
procedure diverges quickly.

Possible generalizations The iterative nature of the optimiza-
tion process allows us to generalize the input illumination setting.
For example, point (or even area) light sources can be modeled
by approximating them with a single or several directional light
sources in each iteration. Moreover, the process can be easily
adapted to optimize for light directions or positions. We have ex-
perimented with this extension of our method and we have found
that it works well in practice.

6 Results and applications

We use the proposed optimization method to create example sur-
faces that convey various input images. In all examples we opti-
mize for two or three directional light sources which lie within a
180o cone centered at the main surface normal. We observe that in
order to obtain the best results, the average value of a given input
image should match the radiance of a relief plane under the cor-
responding light source. This can be achieved either by adjusting

Figure 5: The desired image, and the resulting machined relief sur-
face for different lighting directions.

the light source intensity or by preprocessing the input images. We
have also determined that the optimization parameters introduced in
the last section can be mostly set to default values. The smoothness
terms wc, wp are set to 0.1 for all results and the gradient compres-
sion factor α is set to one (except where noted). The only parameter
that needs to be adjusted is the height control wh.

In our examples we use input images with resolutions between 300
by 300 pixels and 600 by 600 pixels. The resolution of the result-
ing reliefs is matched or exceeds the resolution of the input images.
The computed surfaces are stored as STL files, which can then be
used to fabricate the physical surfaces. We manufacture these sur-
faces using two different fabrication methods. In the first method,
we use a Roland EGX-600 computer controlled engraver. This en-
graving machine is very precise (0.01 mm). Its working volume is
610×407×42.5 mm. However, in practice, the maximum height of
a relief generated using this engraver is about 5 mm. Our example
reliefs are cut out of acrylic and then they are coated with a white
diffuse paint. For a second method, we use a high-precision 3D
printer – Connex350 by OBJET. The maximum resolution of the
printer is 600dpi and the working volume is 342×342×200 mm.
This 3D printer lets us generate reliefs with larger depth range. As
the base printing material is slightly translucent we also coat all the
example surfaces with a white diffuse paint. All figures in this pa-
per include photographs of the relief surfaces produced using one
of these methods.

Single grayscale image. When generating a relief that depicts a
single grayscale image under different light directions we optimize
using the same input image for all desired light directions. The re-
sulting relief image is usually slightly different for different direc-
tional illuminations. However, the image can be clearly perceived
even for light directions that have not been part of the optimization.
The case of depicting a single grayscale image is less constrained
and therefore we can afford to make the surfaces relatively flat – we
use wh = 1.

As an interesting example, we have manufactured surfaces that de-
pict “impossible” geometry such as the impossible triangle (see
Fig. 1) or the famous impossible cube (see Fig. 5). For the cube
we show several different lighting directions. To show how insen-
sitive the reliefs are to the actual illumination we took a photograph
of the relief in Fig. 6 under very general lighting conditions, i.e.
daylight that has a dominant direction because it comes through a
window.

Pairs of images. We have also created several reliefs that depict
two different images when illuminated from two distinct light di-
rections. We observe that high contrast edges that are present in
the input images are visible in the relief surface regardless of the
light direction. While unfortunate, this cannot be avoided when the
output surface is reasonably smooth (see our gamut analysis in sec-
tion 4.2 and also Horn et al.[1993]). This is because a high contrast
edge in the image corresponds to a line of high curvature in the
fabricated surface. This edge is going to be visible unless the di-



Figure 6: A relief created from the image in the top row. The illumi-
nation for capturing the image is created by simply putting the relief
close to a window (middle row), showing that the images created by
the reliefs are not very sensitive to the particular illumination set-
ting.

Figure 7: Pairs of images taken under different illumination con-
ditions, resulting optimized simulated pair and photographs of the
machined surface for roughly equivalent light directions.

rection of this curvature maximum is aligned with the projection of
the light direction. This requirement is violated by any edge that
is curved almost everywhere. Therefore, input image pairs that can
be reliably reproduced have contrast edges in similar places or in
regions where the other image is stochastic.

Perhaps the most obvious input to our method are two photographs
of the same scene taken under different illumination conditions. We

Figure 8: A relief created to generate a color image under illumi-
nation by a red, a green, and a blue light source. Due to the large
differences in desired radiance values for some regions it is hard to
avoid a significant depth of the relief.

show such examples in Fig. 7. Note that most parts of the result-
ing relief are not good approximations of the underlying geometry
of the scene. However, even for a moving light source the relief
behaves realistically.

We have also tested the reproduction on sufficiently different input
images. The main artifact in these examples are the visible high
contrast edges for most light directions. In order to reduce this
problem we can align the input images. For example, in Fig. 1 we
show a result for which we warp two different face images such that
the eyes, nose, and mouths coincide. In the case of two input im-
ages, different radiance values for the same surface location leave
less room for the choice of normals. This means for a reasonable
reproduction we cannot compress the height as much as in the sin-
gle image case. For these examples, we reduce the value of wh to
0.1.

Color image reliefs. As another application we consider the case
when the light sources have different colors. Since our method
allows depicting two or more similar input images we attempt to
reproduce colored images as well. Given the colors of the light
sources, we project a color image into these primaries yielding a
set of input images. These images are used as input to our opti-
mization process to obtain a surface which approximates the color
image when illuminated by this colored lighting. We believe that
these reliefs are the first to reproduce color images on white diffuse
surfaces.

The example in Fig. 1 uses two primaries, a red and a green light.
We have also tried decomposition into RGB and using three differ-
ently colored light sources (see Fig. 8). However, we have found
that full color reproduction is usually very limited because the de-
sired radiance for different channels can be very different. This
leads to necessarily large inclination of the surface. We allow this
behavior by reducing the height control parameter wh to 0.001. We
believe that it is be possible to improve these results by also opti-
mizing for light source directions and color.

Geometry / image pairs. As the last application, we show that
we can combine traditional reliefs (or bas-reliefs) with additional
desired images. We have modified the RTSC software courtesy of
DeCarlo and Rusinkiewicz [DeCarlo et al. 2003] to output the shade
images and the corresponding depth maps. We use one of the depth
maps to provide values for h∗(x,y). The input images are used to
set additional constraints. Fig. 9 shows the result of using mean
curvature shading and black contours as the input images. The re-
sulting relief shows significantly more detail compared to the plain
relief since it also reproduces the desired input images. Note that
we are not specifically aiming at the creation of bas-reliefs such as
the prior work[Weyrich et al. 2007; Song et al. 2007; Sun et al.
2009].



Figure 9: This relief has been created from images produced by
RTSC [DeCarlo et al. 2003] and a corresponding depth image to
set the values of h∗(x,y). The mean curvature shading used in the
images introduces additional detail into the relief that is not a part
of the shading due to the depth image.

7 Conclusions

We have demonstrated that it is feasible to automatically generate
relief surfaces that reproduce desired images under directional illu-
mination. Our experiments show that it is important to include re-
quirements such as invariance due to changes in viewing and illumi-
nation direction in the optimization approach. The reliefs resulting
from our optimization clearly show the desired images despite im-
perfect fabrication, non-Lambertian reflectance properties of base
materials, and a wide range of viewing and lighting conditions.

Limitations: Generating reliefs for a single image, visible un-
der different illuminations works best. However, designing reliefs
such that they produce different images for different light directions
suffers from significant “cross-talk” between high contrast edges.
While these edges typically align nicely in the color setting, the
necessary large differences in image values for the corresponding
pixels lead to either large gradients in the relief making it hard to
fabricate and leading to less stable viewing conditions. We believe
that color reliefs could be improved significantly by extracting two
dominant primaries from the input image (for example, using an op-
timization approach similar Power et al. [1996]) and then projecting
the image into the new color space. This, however, would make the
practical setup of the light sources more difficult. Furthermore, our
assumption that the reflectance of underlaying material is Lamber-
tian is an approximation, as reflectance of real surfaces may have
a significant non-Lambertian component. However, in practice, the
images are still clearly visible even on glossy surfaces. Our current
approach also does not take into account interreflections between
different parts of the relief surface. Since our reliefs are typically
quite flat this effect is not very noticeable.

Future directions: The limitations mentioned above are obvious
directions for future research. One may use arbitrary BRDFs, con-
sider subsurface scattering, or interreflections during the optimiza-
tion of relief surfaces. Furthermore, given that the surfaces are fab-
ricated with computerized tools, it is conceivable that their albedo
can be controlled as well. This would make the optimization pro-
cess less constrained and it would very likely lead to better visual
results. Finally, it is possible to optimize reliefs for point light
sources instead of directional lights. This would extend the applica-
bility of our method as many real world lights can be approximated
using a point light source model. Furthermore, using point light
sources might also add an additional degree of freedom and allow
generating more than two images with a single relief surface.
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