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Fig. 1. Stereoscopic views of multiview content generated from stereoscopic content using our method and two previous approaches. Monocular insets
highlight limitations of the Lagrangian approach when dealing with fuzzy depth edges and ringing artifacts caused by exhaustive input disparities in the
case of the Eulerian approach. Our method successfully avoids such problems and produces outputs visually closest to the original input. Scene copyright: Blender
Foundation (h�ps://orange.blender.org/)

Stereoscopic 3D (S3D) movies have become widely popular in the movie
theaters, but the adoption of S3D at home is low even though most TV
sets support S3D. It is widely believed that S3D with glasses is not the right
approach for the home. A much more appealing approach is to use automulti-
scopic displays that provide a glasses-free 3D experience to multiple viewers.
A technical challenge is the lack of native multiview content that is required
to deliver a proper view of the scene for every viewpoint. Our approach
takes advantage of the abundance of stereoscopic 3D movies. We propose
a real-time system that can convert stereoscopic video to a high-quality,
multiview video that can be directly fed to automultiscopic displays. Our
algorithm uses a wavelet-based decomposition of stereoscopic images with
per-wavelet disparity estimation. A key to our solution lies in combining
Lagrangian and Eulerian approaches for both the disparity estimation and
novel view synthesis, which leverages the complementary advantages of
both techniques. The solution preserves all the features of Eulerian methods,
e.g., subpixel accuracy, high performance, robustness to ambiguous depth
cases, and easy integration of inter-view aliasing while maintaining the
advantages of Lagrangian approaches, e.g., robustness to large disparities
and possibility of performing non-trivial disparity manipulations through
both view extrapolation and interpolation. The method achieves real-time
performance on current GPUs. Its design also enables an easy hardware
implementation that is demonstrated using a �eld-programmable gate array.
We analyze the visual quality and robustness of our technique on a number
of synthetic and real-world examples. We also perform a user experiment
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which demonstrates bene�ts of the technique when compared to existing
solutions.
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1 INTRODUCTION
Stereoscopic 3D (S3D) has become much more popular during the
last decade. Today, many movie blockbusters are released in a stereo
format. However, the popularity of S3D in the movie theaters has
not translated to equivalent popularity at homes. Despite the fact
that most current TV sets support S3D and the content providers
o�er streaming stereoscopic content, the adoption of S3D at home
remains very low. It is widely believed that the use of stereoscopic
glasses is not practical in a home setting [Chinnock 2012], and we
believe that the right approach to S3D at home is to use automul-
tiscopic displays that provide a glasses-free, 3D stereoscopic expe-
rience to multiple viewers. These displays are rapidly improving
due to the industry drive for a higher and higher display resolution
(e.g., even current 4K UHD displays can be easily converted to a
3D automultiscopic display with 8 views and an HD spatial reso-
lution). However, using these displays presents one fundamental
challenge – while there is plenty of stereoscopic content available,
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there is practically no multiview content for automultiscopic dis-
plays. Therefore, there is a clear need for methods and systems that
can convert streaming, high-resolution, stereoscopic video available
from the standard delivery channels to high-quality, multiview con-
tent in real time. Furthermore, the methods should be amenable to
hardware implementations such that they can be incorporated in
future streaming TV devices and smart TV sets. Finally, the systems
should support some customization of the 3D video – viewers desire
di�erent levels of the 3D experience.

We propose a method that addresses all of the requirements we
have outlined. It works with existing stereoscopic content expanding
it to a high-quality, multiview format in real time. The method can
be implemented e�ciently in hardware and naturally supports dis-
parity manipulations. It is inspired by the recent advances in phase-
based approaches [Didyk et al. 2013; Fleet et al. 1991; Wadhwa et al.
2013] which provide robustness, enable inter-view anti-aliasing at
almost no cost, and allow for simple disparity manipulation. In con-
trast to standard depth image-based rendering methods [Riechert
et al. 2012; Zitnick et al. 2004], such techniques are limited to small
disparities. Inspired by the work in physics-based simulation [Fan
et al. 2013], we overcome this problem by combining a phase-based
approach (an Eulerian method) with standard depth image-based
rendering (a Lagrangian approach). Our technique starts by decom-
posing the input signal using a set of �lters inspired by a steerable
pyramid decomposition [Simoncelli and Freeman 1995; Simoncelli
et al. 1992]. The basis functions of this transform resemble Gabor-
like wavelets; therefore, we will refer to them as wavelets. Next,
disparity information is estimated for each of them separately using
a combination of standard disparity estimation and phase-based
measures. To synthesize new views, our method applies a wavelet
re-projection which moves wavelets according to their disparities.
Such an approach allows us to both handle large disparities and pre-
serve all the advantages of the Eulerian approach [Didyk et al. 2013].
We demonstrate that our method can provide real-time performance
both on a GPU and a �eld-programmable gate array (FPGA). We
evaluate our method on a variety of stereoscopic test scenes and
Hollywood movies.

2 PREVIOUS WORK
Multiview content can be captured with camera arrays [Matusik and
P�ster 2004; Wilburn et al. 2005, 2001]. Such setups are expensive
and hard to manage due to their size. Smaller light�eld cameras
[Lytro Inc. 2015; Raytrix GmbH 2015] have become available, but the
amount of parallax they o�er is insu�cient to create good stereo-
scopic e�ects. A great alternative to capturing multiview content is
to use image-based techniques which can convert existing, widely
available stereoscopic footage to a multiview version. In this section,
we provide an overview of these techniques.

Image-based rendering techniques can be categorized into La-
grangian and Eulerian methods. We borrow this terminology from
recent work on image manipulations [Didyk et al. 2013; Wadhwa
et al. 2013; Wu et al. 2012]. Originally, both terms refer to handling
�uid dynamics. Lagrangian techniques analyze the trajectory of the
individual particles, whereas Eulerian methods analyze the local
change of di�erent characteristics, such as pressure and velocity,

over time. Similarly, in the context of novel-view synthesis, La-
grangian techniques analyze correspondence in the input images,
i.e., depth/disparities, whereas Eulerian approaches process local
changes of pixel values.

Lagrangian Techniques. Lagrangian techniques recover depth in-
formation �rst [Brown et al. 2003], and then use re-projection [Mark
et al. 1997] to create novel views [Smolic et al. 2008]. Using such an
approach, Riechert et al. [2012] and Liao et al. [2013] built systems
for real-time stereo-to-multiview conversion, and similar techniques
are used in the context of view reprojection for virtual reality [An-
derson et al. 2016]. Although many sophisticated techniques for
depth estimation have been proposed, this is still a challenging
problem, especially in the case of real-time applications. The meth-
ods still su�er from low-quality depth maps, if the performance of
the system is of high importance. To overcome this limitation, it is
possible to improve depth information using an additional �ltering
[Matsuo et al. 2013; Richardt et al. 2012], or by applying more so-
phisticated matting techniques [Hasino� et al. 2006; Zitnick et al.
2004]. Although such re�nements can lead to signi�cant quality
improvement, this often comes at the price of reduced performance.
For example, the solution by Zitnick et al. requires an additional
o�-line preprocessing step. Another approach to overcome the prob-
lem of poor depth estimation is to use sparse depth information
together with an image warping technique [Farre et al. 2011; Ste-
fanoski et al. 2013]. Such methods have an additional advantage as
they do not need to deal with missing information in disocclusion
regions. This, however, comes at the price of poor depth quality at
sharp depth discontinuities and in regions with �ne depth details.
The resolution of the mesh is usually too coarse to handle such
cases. Very recently, a hardware implementation of such a tech-
nique has also been presented [Scha�ner et al. 2015]. A di�erent
kind of approach was proposed by Flynn et al. [2015]. They trained
a deep convolution network for view interpolation. A similar ap-
proach was presented by Kalantari et al. [2016]. They trained a deep
convolutional network for both disparity and in-between view com-
putation for narrow baseline data. Both techniques achieve superior
performance in challenging regions with occlusions, but they can-
not perform signi�cant extrapolation. It is also unclear how they
can handle arbitrary baselines. Both of these aspects are crucial for
creating content for automultiscopic display. Furthermore, real-time
performance was not demonstrated for these techniques, especially
in the context of high-resolution content as in our case.

Most of the Lagrangian approaches rely explicitly on per-pixel
depth information. This is often insu�cient when depth cannot
be uniquely de�ned. Examples include motion blur, depth-of-�eld
e�ects, and transparencies, which commonly appear in the case of
movie content. This problem has been recently acknowledged by
view synthesis techniques that handle the case of highly re�ective
surfaces. The most common techniques decompose the input image
into layers, e.g., di�use and specular, [Sinha et al. 2009; Szeliski
et al. 2000] and perform the view synthesis separately for each of
them. Recently, a more robust technique that does not require the
explicit layer separation has been proposed by Kopf et al. [2013].
Although these techniques o�er a signi�cant step towards handling
di�cult cases, they deal only with re�ections. Also, none of these
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works provide a complete real-time end-to-end system for novel
view synthesis.

Eulerian Techniques. Eulerian techniques estimate local changes
using local phase information, as opposed to recovering depth or
optical �ow information explicitly. The advantages of phase-based
processing have been presented by Fleet et al. [1990; 1991], and
more recently in [Didyk et al. 2013; Wadhwa et al. 2013]. They are
often attributed to the overcomplete representation, i.e., instead, of
one per-pixel depth value, phase-based approaches consider local-
ized, per-band information. This leads to better results in di�cult
cases where per-pixel information cannot be reliably estimated, e.g.,
depth-of-�eld, motion blur, specularities, etc. [Didyk et al. 2013],
and more accurate estimates due to the sub-pixel precision of these
techniques [Fleet et al. 1991; Wadhwa et al. 2013]. Another argu-
ment is that phase-based manipulations are semi-local and cannot
have catastrophic failures like pixel warping does. As a result, such
methods provide graceful quality degradation. Unfortunately, phase-
based techniques have one signi�cant limitation: the disparity/depth
range that they can deal with is relatively small [Didyk et al. 2013].

Although there exist multiscale phase-based disparity estimation
techniques which extend the supported disparity range [Pauwels
and Van Hulle 2008; Zhou et al. 2007], their goal is to estimate per-
pixel disparity. Instead, we address the problem of limited disparity
support by combining a phase-based technique with a Lagrangian
approach which pre-aligns views to reduce disparity so that the
Eulerian approach can be applied. In this regard, the most simi-
lar work to ours is the technique proposed by Zhang et al. [2015],
which addresses the problem of reconstructing a light �eld from a
micro-baseline image pair. Similarly to our work, they also rely both
on disparity and phase information. However, in contrast to their
view-synthesis method which relies on per-pixel disparity infor-
mation, we use a concept of per-wavelet disparity, which provides
much richer representation. Another di�erence is that we propose
a real-time solution which is capable of performing the stereo-to-
multiview conversion on the �y. To our knowledge, there have been
no attempts at designing hardware implementations of Eulerian
techniques for view expansion.

Discussion. In comparison to previous techniques, the main contri-
bution of this work is the end-to-end solution for multiview content
creation that exploits complementary advantages of Lagrangian
and Eulerian techniques and overcomes their limitations. We draw
inspiration from the steerable pyramid decomposition [Simoncelli
and Freeman 1995; Simoncelli et al. 1992] which was recently used
[Didyk et al. 2013; Wadhwa et al. 2013], but we augment it with
depth information. This enables handling large disparities, which
was the main limitation of previous phase-based methods. Although
initialization of depth estimation techniques with a good guess pro-
vided by another or the same technique is not new [Fleet et al. 1991;
Nishihara 1984], the idea was mostly exploited in the context of
multi-scale approaches, also called coarse-to-�ne propagation tech-
niques, where the goal is to estimate per-pixel disparity. In our work,
we explicitly avoid such strategies and do not share disparity infor-
mation between di�erent frequency levels of our decomposition.
This leads to a more �exible representation for cases where a single
per-pixel disparity is not de�ned, as for multiple depth-separated

image layers. We also reduce our conversion problem to a set of 1D
problems, which signi�cantly improves performance. To synthesize
novel views, we introduce a new view synthesis approach which
reprojects wavelets. To this end, we employ a non-uniform Fourier
transform. Despite some similarities to the idea of pixel reprojection
(e.g., [Mark et al. 1997]), the domain and technique are signi�cantly
di�erent. All the above steps make our technique suitable for hard-
ware implementation (Section 5). We believe that this is the �rst
attempt to implement a phase-based view expansion in hardware.

3 STEREO TO MULTIVIEW CONVERSION
For expanding stereoscopic content to its multiview version, our
method takes as an input a recti�ed stereoscopic image pair to-
gether with corresponding disparity maps. In the �rst step, the
images are decomposed into wavelet representations (Section 3.1),
and disparity maps are used to compute per-wavelet disparity. For
e�ciency reasons, we allow the disparity maps to be low quality.
In our method, we are concerned with reproduction of horizontal
parallax, and use low-resolution disparity maps computed using
the work of Hosni et al. [2013]. We also rectify the input views
using [Fusiello et al. 2000]. Next, we re�ne per-wavelet disparity
by incorporating phase information. To reconstruct novel views,
we propose a new image-based rendering approach tailored to our
decomposition (Section 3.2). In contrast to standard image-based
rendering techniques which use pixel reprojection to compute novel
views [Mark et al. 1997], our technique reprojects whole wavelets. It
supports both view interpolation and extrapolation in a uni�ed way.
The two operations di�er only in the direction in which wavelet
locations are altered.

3.1 Per-wavelet Depth Estimation
Disparity is an important cue to synthesize novel views. For stereo-
scopic content, disparity maps (Dl and Dr ) encode the correspon-
dence between left and right views (L and R). More formally, if for
a given position in the world space, its projections into the left
and the right views are xl and xr , the disparity is de�ned as the
distance between those locations in the screen space. A signed dis-
tance is considered to distinguish between locations in front of and
behind the zero-disparity plane. For recti�ed views disparity maps
represent a horizontal translation and can be de�ned as follows:
Dl (xl ) = xlx − xrx and Dr (xr ) = xrx − xlx , where xlx and xrx
denote the horizontal components of xl and xr .

In contrast to previous approaches, we consider per-wavelet,
instead of per-pixel, disparity. This allows us to use phase informa-
tion to improve the quality of the estimates and overcome limita-
tions of previous Lagrangian and Eulerian approaches. To compute
per-wavelet disparities, we �rst decompose the input images into
wavelet representations. Then, for each wavelet, the initial disparity
is computed from the input disparity maps. In the next step, this
information is re�ned by additionally considering local phase in-
formation. The whole process is depicted in Figure 2. Our disparity
information is not a single disparity map. Instead, we obtain one
disparity map for each pyramid level.

Wavelet Decomposition. Because the input views are recti�ed,
we can limit our analysis to scanlines. We consider each pair of
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Stereo image + disparity Pair of 1D 
scanline signals

Initial correspondence Wavelets
(amplitude/phase)

Phase difference

+

+

+

Per-wavelet disparity

Il

Ir
Ir(r)

Il(r)

Dr

Fig. 2. In contrast to most approaches where a per-pixel disparity is estimated, in our method we consider wavelets as basic elements of a picture and estimate
disparity for each of them. To this end, from le� to right, we start with a stereoscopic image pair and consider each image scanline independently. We
decompose the scanlines into wavelets and find the initial correspondence between wavelets from the le� and the right views based on the input disparity
maps. The position di�erence of the corresponding wavelets defines the initial disparity information. To further refine it, the phase di�erence of the wavelets
is computed and combined with the initial disparity estimation.

corresponding scanlines (1D signals) (Ir and Il ) of the right and left
views separately and represent them as a sum of basis functions bf
with a frequency response de�ned as:

b̂f (ξ ) = cos(π
2

logw (ξ/f )) · Π(
1
2
logw (ξ/f )), (1)

where f ∈ F speci�es the central frequency of the �lter, Π is a
rectangular function centered around zero that extends from −0.5
to 0.5, and w de�nes the width of �lters – the ratio of central fre-
quencies of neighboring levels. In this work, we perform an octave
decomposition and use w = 2. We found no visible di�erence when
reconstructing new views using F with frequency below 16. Con-
sequently, in all our results, we let

F = {2n |n = {4 . . . log2(length(I ))}).

The �lters in Equation 1 are 1D versions of �lters used by Simon-
celli et al. [1995; 1992]. Similarly to the original �lters, ours allow
for computing local phase and amplitude but lack information on
orientation. An additional low-pass �lter,

b̂0(ξ ) =
∏
f ∈F

√
1 − b̂2f (ξ ), (2)

collects the residual low-frequency components. The �lters are
visualized in Figure 3.

Using such a �lter bank, we compute a single wavelet coe�cient
for a given location x and frequency f as:

Af x = (bf ∗ I )(x),
where ∗ denotes a convolution. As we use complex �lters bf , Af x
is also a complex number which contains local phase and amplitude.
The decomposition can be easily inverted by summing up wavelets
for all frequencies in (F ) and the additional residual component
from Equation 2:

I = 2 Re ©«
∑

f ∈F∪{0}

length(I )
|Xf |

©«
∑
x ∈Xf

Af xbf (t − x)
ª®¬ª®¬. (3)

The additional factor of 2 compensates for the fact that the complex
wavelets are obtained only from positive frequency components, and

Re
sp

on
se

Re
Im

Frequencies
10

0
10

1

1

Space

Fig. 3. Filters used to perform wavelet decomposition. From the top: Fre-
quency response for several filters; real part in the spatial domain; and
imaginary part. The plots in the spatial domain are scaled for visualization
purposes.

factor of lenдth(I )/|Xf | is necessary to compensate for the energy
loss due to only |Xf | wavelets representing the signal. We choose

Xf = {x ∈ Z|max(f − f /2, 1) ≤ x ≤ min(f + f /2, length(I ))}, (4)

for f ∈ F and X0 = Xf min where f min is the lowest frequency in
F . These sets have overlapping regions such that each wavelet is
sampling at least twice, so that it prevents aliasing.

In practice, both decomposition and reconstruction are performed
in the frequency domain. To decompose the signal, we simply trans-
form each 1D scanline into the frequency domain, multiply it with
the �lters, and transform the result to the pixel domain. The recon-
struction is done similarly in the frequency domain, but in our case,
this step requires a non-uniform Fourier transform (Section 3.2).

InitialWavelet Disparity. After decomposing Ir and Il into wavelets,
we establish a correspondence between them using input disparity
maps (Dr and Dl ). More precisely, for each wavelet ψr f x from Ir
we seek a corresponding waveletψl f x ′ from Il . To this end, for each
ψr f x we compute a disparity value from Dr . Because each wavelet
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spans a certain spatial extent, there is no direct correspondence
between wavelets and disparity values. Therefore, we compute the
disparity of a wavelet as an average of disparities in its local neigh-
borhood whose size is equal to the wavelet spacing. Formally, the
disparity for waveletψr f x is de�ned as

dr f x =

x+s/2∑
y=x−s/2

Dr (y) / (s + 1), where s = | Ir | / |Xf |.

ψl f x ′ is then found as the closest wavelet to the location x − dr f x .
We perform the same step for all wavelets from Il . An alternative
to �nding the closest wavelet would be to re-evaluate it at the
exact same location. However, this would signi�cantly increase the
computational cost.

Wavelet Disparity Re�nement. The disparity between wavelet
pairs computed in the previous step is often inaccurate, due to
insu�cient quality of the input disparity maps, or additional e�ects
such as transparency or depth of �eld that cannot be captured using a
per-pixel disparity value. However, our observation is that the initial
correspondence serves as a good pre-alignment, and the residual
disparity that is not captured by the disparity is usually small. Such
small, often sub-pixel di�erences can usually be e�ectively captured
by the phase [Didyk et al. 2013; Fleet et al. 1991]. Therefore, we
further improve the per-wavelet disparity estimation using phase
di�erence between corresponding wavelets:

∆φ = arg(Ar f x ) − arg(Al f x ′).

The phase di�erence can be easily transformed into the disparity
residual by multiplying it by f /2π , and added to the initial disparity
of wavelet as a correction. Consequently, we update disparity infor-
mation dr f x of waveletψr f x by adding ∆φ · f /2π . In this way, we
obtain a continuous depth resolution without expensively numerous
depth labels. For color images, we compute phase di�erences for
each channel separately and combine them using a weighted sum
to get the disparity re�nement. The weights are proportional to the
wavelet amplitudes to penalize the phase for weak signals that can
be only poorly estimated.

Our per-wavelet disparity estimation is performed on individual
1D scanlines. To prevent inconsistencies between them, we apply
an additional �ltering to the disparity estimation. More precisely,
we �lter the per-wavelet disparity using a 2D mean �lter with a
kernel size equal to double wavelet spacing. To avoid �ltering across
signi�cant discontinuities, we penalize contributions from wavelets
with a large phase di�erence. To this end, we weight the contribution
of each wavelet using a Gaussian function de�ned on the phase
di�erences with σ = π/4.

As a result of our wavelet disparity re�nement step, we obtain
an accurate disparity estimation for each wavelet. Compared to
standard depth-based methods which compute per-pixel dispar-
ity information, this is a much richer representation, as it stores
disparity information separately for di�erent frequencies. As we
show later (Section 6), such additional information enables handling
di�cult cases when used for rendering novel views.

3.2 Novel Views Reconstruction
To compute novel views, we �rst modify the position of each wavelet.
The new position for each waveletψ at location x and disparity d is
computed as x + a · d , where parameter a directly controls the new
viewing position. After the position of each wavelet is updated, we
convert the displaced wavelets back into uniform-spaced samples
using a non-uniform Fourier transform as described in [Liu and
Nguyen 1998]. The non-uniform Fourier transform process utilizes
an oversampled grid with an oversampling factorm = 2. Each dis-
placed wavelet is approximated as a weighted sum of q = 4 nearby
samples on the oversampled grid, where the weights depend on the
fractional residual in the displaced location. After the contributions
from all wavelets are summed, a low-pass �lter is used to downsam-
ple back into the original grid. We refer the reader to the original
paper for more details. After the wavelets are converted back to
the original uniform grid, we can reconstruct the 1D signal using a
pyramid reconstruction. For lowest frequency wavelets correspond-
ing to �lter b0, a linear interpolation of the wavelet values on the
uniform grid is used. This is to prevent low-passed wavelets from
accumulating and creating color bands.

View Arrangement for a Screen. In the simplest case, we treat
the two input views as the central views of an autostereoscopic
screen, and reconstruct every other view from the closest original
one. More formally, if the targeted display requires a set of 2N
views {Vi }, then VN view corresponds to the left input view, and
VN+1 view corresponds to the right input view. The set of views
{Vi : i < N } is then reconstructed from the left view by setting
a = |N − i |. Views {Vi : i > N + 1} are reconstructed from the right
view by setting a = |i − N − 1|. This strategy leads to a simple view
expansion. Note that before reconstructing novel views, the pair
of corresponding wavelets from the left and the right views can be
moved closer to each other by scaling disparity between them by
factor s < 1 and moving their positions accordingly. E�ectively, such
an operation reduces disparities in the original views, and when
the strategy for new views reconstruction is applied, the disparities
between neighboring views will be compressed by factor s . Similarly,
one can increase disparity in the multiview content by scaling the
disparities between the initial wavelets by s > 1. Please note that if
s < 1, some of the views will be a result of interpolation between
the input views and others will be extrapolated. Our technique is,
however, transparent to these cases and can treat both of them
simultaneously.

Di
sp

ar
ity

Sampling position0-1 1

original sampling positions
wavelet positionsψ

ψl ψr

dl dr

occlusion regions

Fig. 4. We resolve occlusion of wavelet ψ by a�enuating its amplitude. The
a�enuation is proportional to the part of the wavelet ψ that is occluded
by the nearest le� foreground wavelet ψl and the nearest right foreground
wavelet ψl within the same view and frequency band.
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Occlusions and Disocclusions. Moving individual wavelets of the
same frequency independently has similar shortcomings as moving
image patches in the Lagrangian approach. There might be two
potential problems resulting from the non-uniform sampling. First,
there can be missing information in the undersampled regions. This
does not cause signi�cant problems, as there is remaining informa-
tion in lower frequency levels. Second, some of the wavelets may
overlap. This leads to mixing background and foreground signals.
To avoid this, we detect occluded wavelets and attenuate their fre-
quency. This approach is conceptually similar to resolving pixel
occlusions using depth information in DIBR.

To this end, for a given waveletψ we �rst �nd the closest wavelets
to the leftψl and to the rightψr that have smaller disparities (i.e.,
they are in front of ψ ). It is su�cient to consider wavelets corre-
sponding to the same frequency. We then compute the portion of the
waveletψ that is occluded byψl andψr . We assume that one wavelet
completely occludes the other wavelet if the distance between them
is at most half of the original sampling distance. As a result, we de-
�ned the occlusion using distances between sampling locations ofψ
and the other two wavelets, i.e., the occlusion caused byψl is de�ned
as Ol = max(2 − 2dl , 0) and for ψr by Or = max(2 − 2dr , 0). Here,
dl and dr are the distances, as marked in Figure 4, and the original
spacing between wavelets is assumed to be 1. The occlusions have
constant value 1 if the neighboring wavelet moves halfway to ψ ,
and 0, if the distance between them is at least the original sampling
distance. To combine occlusions for both wavelets, we de�ne the
e�ective occlusion of waveletψ as Oψ = Ol +Or . Oψ = 0 indicates
that neitherψl norψr occludeψ . Oψ = 1 indicates that waveletψ
is completely occluded. Next, we attenuate waveletψ according to
a smooth function s that interpolates between 0 and 1.

s(x) =


1 if x ≥ 1
3x2 − 2x3 if x ∈ (0, 1)
0 if x ≤ 0

The amplitude of the attenuated wavelet is then de�ned as Aψ =
s(Oψ ) · Aψ . For real-time performance, we �nd ψl and ψl by �rst
placing all wavelets in buckets according to their location, and
then considering wavelets only from neighboring buckets within a
distance of the wavelet spacing at the current level.

4 ADDITIONAL PROCESSING
Computing high-quality views is not su�cient to assure perfect
viewing quality. Due to the limited angular resolution of automulti-
scopic screens, displaying synthesized multiview content directly
on a screen may lead to signi�cant inter-view aliasing in regions
with large disparities and �ne texture. One of the results of such
aliasing is ghosting (Figure 5, insets). To enhance the quality and
provide a better experience, an inter-view antialiasing needs to be
applied [Zwicker et al. 2006]. Moreover, due to the accommodation-
vergence con�ict, large disparities may introduce visual discomfort
[Shibata et al. 2011]. To overcome this limitation, depth presented
on such an automultiscopic display needs to be carefully adjusted to
match its capabilities [Chapiro et al. 2014; Didyk et al. 2013; Masia
et al. 2013]. Both angular antialiasing and depth manipulations can
be easily incorporated into our method.

Antialiasing. Didyk et al. [2013] proposed to perform the inter-
view antialiasing by attenuating local amplitude according to phase
information. As we rely on a very similar decomposition, the �lter-
ing can be performed using a similar technique. To �lter a view that
was synthesized using our method, we attenuate every wavelet be-
fore the view is reconstructed. The amount of attenuation depends
directly on the disparities between neighboring views, which can be
easily obtained from our representation. We choose a Gaussian �lter
for our antialiasing �ltering. For a given wavelet at frequency level
f with disparity d , we �lter the signal with 1√

2πσ
exp(−d2/(2σ 2)),

where σ is the antialiasing width as de�ned in Didyk et al. [2013].
This corresponds to multiplying amplitude of each wavelet with
exp(−σ 2( 2πdf )

2/2). The example of a synthesized view and its �l-
tered version is shown in Figure 5 (top). Note that this can lead
to blur in areas with large disparities, e.g., the background, but
in return, it avoids signi�cant ghosting, which can impair stereo
perception and is in general not desired [Zwicker et al. 2006].

Disparity Adjustment. Using our wavelet representation together
with per-wavelet disparity information, we can easily apply non-
linear disparity mapping operators, which was not possible for
Eulerian methods [Didyk et al. 2013]. Such operators are usually
de�ned as a disparity mapping function which maps disparity ac-
cording to certain goals [Didyk et al. 2012; Lang et al. 2010]. In
contrast to simple disparity scaling described in Section 3, a dis-
parity mapping function usually scales disparities in a non-linear
way. To apply such a mapping during our synthesis, it is su�cient
to replace the scaling factor s with the desired non-linear function.
The rest of our view synthesis technique in Section 3 remains un-
changed. In Figure 5 (bottom), we demonstrate one example of such
manipulations.
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Fig. 5. This figure presents the additional processing. Top: A synthesized
view using our technique (le�) without inter-view antialiasing simulated
as it would appear on an automultiscopic screen; the same view with the
antialiasing. The inset shows a zoomed-in region. Note how aliasing in the
form of ghosting is removed by the additional step. Bo�om: An example
of nonlinear disparity remapping. The depth for the foreground objects is
compressed, resulting in this part of the scene being pushed close to the
zero disparity plane (screen depth). Both original and modified images can
be viewed using red-cyan anaglyph glasses.
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Fig. 6. The figure presents how our method can be mapped to hardware architecture composed of an FPGA board with ARM processors.

5 IMPLEMENTATIONS
Our technique provides performance that is necessary to convert
a 4K stereoscopic content in real time. In this section, we describe
two implementations: a CUDA-based GPU implementation and a
hardware implementation using an FPGA with ARM processors.

5.1 GPU Implementation
We produce content for an 8-view 4K (3840 × 2160) automultiscopic
display, where each of the output views has a resolution of 960 ×
1080. Our implementation accepts a FullHD stereo video input and
computes the initial disparity maps at a quarter the size of the input.
The rest of the pipeline is computed at 960 × 1080. We implement
our method on a GPU using CUDA. To test its performance, we run
it on the Nvidia GeForce GTX Titan Z graphics card. For such a
setup, our technique can perform the conversion with the additional
steps in 25–26 FPS for all sequences presented in the paper and
the supplemental material. The breakdown of the timing and the
memory usage for the individual steps is presented in Table 1.

Stage Timing (%) Memory (GB)
Pyramid decomposition 9.9 1.05

Initial disparity estimation 4.9 0.31
Per-wavelet disparity re�nement 18.5 0.23

Wavelet re-projection 30.5 0.50
Pyramid reconstruction 36.2 1.55

Table 1. Performance breakdown for the individual steps of the GPU imple-
mentation.

5.2 FPGA Implementation
One advantage of our technique is that most stages in our algorithm
can be done in a scanline fashion. This eliminates the need for
any external memory during the computation of these stages, and
thus, it is suitable for a hardware implementation such as an FPGA
or an ASIC. Our technique requires only low-resolution disparity
maps. Therefore, we leverage the ARM processors inside the System-
On-Chip (SoC) for this task. The ARM processor computes these
disparity maps at the 240 × 180 resolution at 24 FPS.

Figure 6 describes each stage in our hardware implementation.
The �rst stage decomposes the frame into two pyramids: one for the
left view and the second for the right view. Both pyramids are sent
to the second stage. In the second stage, each wavelet in the pyramid
is re-projected according to the disparity from the ARM processor.
The re-projected wavelets are �ltered similarly to [Liu and Nguyen
1998] and sent to the �nal stage. The �nal stage reconstructs views
from the synthesized pyramids and sends the result to the output.

We test each stage of our implementation on the FPGA SoC
Xilinx ZC706 development board using Xilinx Vivado HLS 2015.4
software. The FPGA SoC has two ARM processors running at up to
1 GHz and programmable logic with 350K logic cells and a total of
19Mbit of internal RAM. Table 2 shows the resource utilization of our
implementation. Each stage is customized to the target, generating
8 views of 512× 540 resolution at 24 FPS while running at 150 MHz.
The total memory utilization of our implementation is only 13 Mbit
of the internal memory. This is a much smaller memory footprint
than our current GPU implementation. Moreover, the current FPGA
implementation uses only about 50% of the hardware resource on the
FPGA we are using. Therefore, it is possible to double the resolution
to get a FullHD resolution in the future implementations.

Stage RAMs (Kbits) DSPs LUTs FFs
Pyramid decomposition 976 26 14K 12K
Wavelet re-projection 12,960 427 74K 85K

Pyramid reconstruction 1,476 75 13K 20K
Table 2. Resource utilization on our FPGA implementation.

6 RESULTS AND COMPARISONS
In this section, we provide an evaluation of our technique on both
synthetic and real footage. We also compare our results to other
techniques and ground truth data. In the paper, we show only stereo-
scopic and single-view images. Please refer to the supplemental
videos, where we show several results of our real-time expansion to
32-view content for video content. The results also include a stereo-
scopic version of the content, as well as a capture of an autostereo-
scopic screen showing our results. We consider both interpolation
and extrapolation for all results in our work.

6.1 Comparison to State of the Art
We compare our method to both Lagrangian and Eulerian tech-
niques. The �rst group consists of a depth image-based rendering
(DIBR) [Riechert et al. 2012] and an image-domain warping (IDW)
[Scha�ner et al. 2015]. Both of them target a real-time conversion
of stereoscopic content to its multiview version. As the source code
of the �rst method is not publicly available, we used our imple-
mentation. We compute the initial disparity map using [Hosni et al.
2013], and apply further depth re�nement [Matsuo et al. 2013] to
improve its quality. For the second technique [Scha�ner et al. 2015],
we provide a direct comparison to the results provided in the orig-
inal paper. For reference, we also compare this to the technique
by Riechert et al. [2012] which is supplied with a full-resolution
depth map. However, this solution cannot be considered as being
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Fig. 7. Columns: Comparison of the same red-cyan anaglyph stereoscopic views produced by PBR, o�line full-resolution DIBR, real-time DIBR and our
algorithm as presented to participants in our user study. Rows: “Big Buck Bunny” © by Blender Foundation (Scene 1 and 2) and “Ball” © by Eric Deren /
Dzignlight Studios (Scene 3).

real-time due to the o�ine depth computation. We also compare to
the Eulerian method proposed by Didyk et al. [2013] which applies
a phase-based rendering approach (PBR).

Lagrangian Approaches. The most common artifacts in image-
based rendering occur on object boundaries. Due to the lack of
information in disoccluded regions, DIBR requires an additional
hole �lling step which provides only an approximate solution by
�lling in the information from neighboring regions. This step is
very sensitive to any depth inaccuracies and a wrong assignment
of pixels to foreground/background regions. Post-processing tech-
niques applied to improve depth usually cannot provide a su�cient
improvement due to boundary pixels sharing both foreground and
background information. The above problems lead to an e�ect of
stretching content over the disoccluded regions. Our technique does
not need to explicitly perform hole �lling. Instead, the missing in-
formation is �lled during the non-uniform FFT. As a result, the local
frequency spectrum in disoccluded regions is similar to the one in

the neighborhood, which can be considered as hallucinating the un-
known content. This is di�erent from the interpolation performed
by DIBR techniques, which leaves vertical frequencies and removes
horizontal ones. The better performance of our technique on object
boundaries can be observed in Figure 1 and Figure 7 (Scene 3, red).

Although the additional post-processing techniques such as [Mat-
suo et al. 2013] improve the quality of depth at depth discontinuities,
in many cases they also lead to depth �attening. In regions without
signi�cant color boundaries or small depth variations, the additional
�ltering creates big �at depth regions, a so-called cardboard e�ect,
when the content is viewed stereoscopically [Meesters et al. 2004].
While these artifacts can be observed in the real-time DIBR method
as in Figure 7 (Scene 1, red and Scene 3, red), our step of phase-based
depth correction can recover from these artifacts and provide a more
correct depth percept. The o�ine DIBR technique supplied with a
high-quality depth map usually does not produce such artifacts.
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Fig. 8. Complex light e�ects. As highlights or refractions have a di�erent disparity than the di�use component, it is challenging to expand views correctly due
to an incorrectly estimated initial depth map. Our approach can recover from such a situation by estimating disparity information separately for each wavelet
frequency level. In this scene, the disparity information for di�use components is captured by higher frequency levels, while lower frequency levels contain the
disparity information for highlights and refractions.
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Fig. 9. The figure presents a comparison of our technique to a recent image-domain warping technique [Scha�ner et al. 2015]. The top row images come
directly from the original publication, while the bo�om row contains corresponding results of our method. The stereoscopic images are presented in anaglyph
colors. Besides the first image (the le�most one), the images were reported as di�icult cases for the IDW method. In all cases they su�er from inaccuracies
coming from sparse depth representations and the artifacts include fla�ening the scene as well as loss of sharp depth discontinuities (arrows). Results provided
by our technique o�er a more correct depth reproduction. At the same time, for the images on which IDW technique performs well (the first image on the
le�), our technique provides equally good results.

Lagrangian techniques also have signi�cant problems when per-
pixel depth is insu�cient to provide good depth representation in a
scene. Such cases include, for example, depth-of-�eld, motion blur,
transparencies, and complex re�ectance e�ects such as highlights.
Our technique, by leveraging the advantages of the Eulerian ap-
proach, can handle such situations more accurately. This is because
instead of per-pixel disparity information, it uses a per-wavelet dis-
parity which provides more information. In the case of motion blur
and depth-of-�eld e�ects, Lagrangian techniques tend to introduce
sharp edges that are not present in the original frames. The problem
is also mentioned in [Riechert et al. 2012]. The e�ect can be observed
in Figure 7 (Scene 2, red and yellow regions): motion blur and depth-
of-�eld e�ects are not correctly reproduced by the real-time DIBR.
The results are better for the o�ine DIBR. Our solution provides
more accurate results. In Scene 3, the DIBR methods have problems
with reproducing the correct depth of re�ections, tiny particles, and
the glassy ball. In contrast, our technique can reproduce the depth
of these elements more precisely by leveraging the advantages of
the Eulerian approach. Figure 8 provides a more in-depth analysis of
how our wavelet representation helps us resolve ambiguous depth
situations.

The problem of depth inaccuracies is addressed in image-domain
warping (IDW) techniques. Such methods overcome the problem by
warping the image according to sparse depth information. For exam-
ple, Scha�ner et al. [2015] use mesh resolution 180×100. This avoids
many visual artifacts related to depth estimation, but introduces
another type of artifact. As the depth information is represented
using a sparse set of features, depth details cannot be reproduced.
We compare our technique to [Scha�ner et al. 2015] in Figure 9. In
all cases, the IDW technique does not introduce visible 2D artifacts;
however, when signi�cant depth variations are present, it �attens
the scene and smooths out depth discontinuities.

Eulerian approach. The major limitation of phase-based tech-
niques is that they can handle only a limited range of disparities
[Didyk et al. 2013]. As a result, the higher frequencies are incor-
rectly synthesized, which leads to signi�cant ringing and blurring
(Figure 1 and Figure 7, Scene 1, yellow). In our work, we overcome
this problem by combining a phase-based approach with a standard
Lagrangian approach. Our technique can handle much larger input
disparities. This leads to better reproduction of high-frequency con-
tent. An important feature of our technique is the ability to perform
sophisticated, nonlinear depth manipulations (Figure 5, bottom).
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Fig. 10. The figure presents an objective performance of our technique and DIBR when compared to ground truth target view images from the Middlebury
stereo datasets (h�p://vision.middlebury.edu/stereo/). Additionally, the results of both techniques with ground truth disparity information are shown (Ours*
and DIBR*). The colormaps correspond to the di�erences between reconstructed images and original ground truth target views measured using the SSIM
metric [Wang et al. 2004]. While our technique (fourth column) outperforms the DIBR technique (second column), it produces very similar results as the
methods that use ground truth disparity information (third and fi�h columns).

The standard phase-based technique can provide only linear scaling
of disparities.

6.2 Comparison to Ground Truth
The input to our technique is a disparity map generated using [Hosni
et al. 2013] at a quarter of the input resolution. We then resample it
to the input resolution using bilinear interpolation. The real-time
DIBR technique that we compare against uses the same disparity
maps, but it performs a number of processing steps to improve
it before it is �nally used for view synthesis. To demonstrate the
robustness of our technique to low-quality disparity information,
we checked how our technique performs if ground truth disparity
information is available. Figure 10 presents results of ours vs. DIBR
techniques for three images from the Middlebury stereo datasets
[Hirschmuller and Scharstein 2007] as di�erences with respect to
known ground-truth target views. Additionally, we computed the
results using the same techniques but supplied with ground truth
disparity information. This is indicated by “*” next to the method
names. The results are compared to original views using the SSIM
metric [Wang et al. 2004], and the di�erences are reported using
colormaps. It can be seen that our technique outperforms the DIBR
technique, even though it uses improved disparity information. At
the same time, our technique provides similar results to the DIBR
technique, which relies on ground truth disparity information. In-
terestingly, our method does not signi�cantly bene�t from better
disparity information. This demonstrates that our technique can
use lower-quality disparity information without overall quality loss
and would most likely not bene�t from costly depth estimations
such as [Zhang et al. 2015]. This is crucial for high-quality view

synthesis, as ground truth disparity is usually unavailable. Although
our technique performs similarly to DIBR with ground truth dispar-
ity, the scenes used in these tests consist mostly of di�use surfaces
without ambiguous depth situations like re�ections, depth of �eld
or motion blur. In more di�cult cases with complex light e�ects,
depth-of-�eld, and motion blur e�ects, our method can recover from
a poorly estimated low-resolution initial depth map and provide
plausible results (Figure 8).

We have also investigated the quality provided by our technique
as a function of time and the magnitude of interpolation and ex-
trapolation that has to be performed. To this end, we used a short,
multiview animation which consists of eight views. This gave us four
di�erent stereo pairs with di�erent baselines that served as an input
to our algorithm for computing missing views. Each synthesized
view was later compared to the ground truth using an SSIM metric.
Sample results, as well as the plots of SSIM scores, are presented in
Figure 11. As expected, the scores decrease with the increasing dif-
ference between the input and output baseline. This is expected, as a
large di�erence in baselines results in a more extensive modi�cation
of the image content. In such cases, the quality loss is an expected
behavior for any synthesis method. For example, when a synthesis
from view 1 is considered, the lowest SSIM score is observed for
view 4 (the top plot in Figure 11b). Conversely, if the synthesis from
view 4 is considered, the quality score is the lowest for view 1 (the
bottom plot in Figure 11b). Interestingly, when the di�erence in
baselines is similar, e.g., synthesizing views 1 and 3 from view 2,
the quality remains similar regardless of whether the technique
performs intra- or extrapolation. Despite the error reported by SSIM
metric, both interpolation and extrapolation lead to visually pleas-
ing results (Figure 11c). As can be observed in Figure 11b, the quality
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Fig. 11. A comparison to the ground-truth multiview video of “Big Buck Bunny” © by Blender Foundation. a) Various input view pairs tested to evaluate role
of input camera baseline. b) The SSIM between our results and the rendered ground truth as a function of time. Each graph shows three plots that correspond
to error (SSIM score) generated by synthesizing a particular view (indicated by the color of the plot) from a source view (indicated by the title of the graph).
The color coding corresponds to the visualization in a). c) Sample views (indicated by columns) synthesized from di�erent input views (indicated by rows).
The orange triangle of the grid (bo�om le�) demonstrates interpolation from a wider to a narrower camera baseline, and the green triangle (upper right)
represents extrapolation from a narrower to a wider camera baseline. The images on the diagonal are the original ground truth views.

of each view is stable across the whole animation, which indicates
a good temporal stability of our technique.

7 SUBJECTIVE EVALUATION
To validate our method, we have applied it to several stereoscopic
movie sequences together with other competing approaches. We
then ran a user study comparing the visual quality of the results.

Fig. 12. Preview of stimuli used in our user study. All copyrights belong to
their respective owners. Images and text owned by other copyright holders
are used here under the guidelines of the Fair Use provisions of United
States copyright law.

Stimuli. 10 short stereoscopic movies with duration ranging from
2 to 5 seconds and with both captured and computer-animated con-
tent were used as inputs for all methods (Figure 12). The disparities

were linearly remapped to limit the maximum angular disparity
with respect to the screen plane to 36 arcmin. Antialiasing was ap-
plied to prevent ghosting artifacts due to screen limitations. The
same parameters were used to process the videos using our real-time
method with a low-resolution disparity estimate (Ours), a standard
real-time Eulerian method (PBR), an o�ine Lagrangian method
utilizing a full resolution disparity estimate (O�ine DIBR), and a
real-time Lagrangian method utilizing bilateral disparity upscaling
of a low-resolution disparity estimate (RT DIBR).

Task. Participants were presented with pairs of videos with the
same sequence processed by two di�erent methods. The sequences
were displayed on a custom 8-view automultiscopic display utilizing
a parallax barrier on top of a 4K 39′′ LCD panel. A dimmed o�ce
light was used to avoid any re�ections that could interfere with 3D
perception. The participants were seated at an optimal distance of
2 meters. A single video was played in a loop at a time. Participants
used a keyboard to switch between two versions at will. Participants
were suggested to move their head in order to explore the multi-view
content. No time limit was applied. Participants used a con�rmation
button to select the video which provided a better overall image
quality. The study consisted of 60 video pairs and on average took 30
minutes. 12 participants naïve to the purpose of the experiment took
part in the study. All of them had normal or corrected-to-normal
vision and none su�ered from stereo blindness.
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Fig. 13. Results of the user study pairwise comparing our method and other
competitors. Values above 50% denote preference of the first named method.
Stars mark statistical significance in the binomial test for p < 0.05.

Results. The results of the study are summarized in Figure 13.
Our method achieved a statistically signi�cant preference (binomial
test, p < 0.05) over the Eulerian PBR method (60.8%) and the real-
time version of the Lagrangian DIBR method (62.5%). There is no
e�ect with respect to the o�ine DIBR (55.8% preference of our
method). This shows that our method is superior to other real-time
alternatives. With only a low-resolution disparity map, it achieves
a visual quality comparable to that of a method which relies on an
o�ine full-resolution disparity estimation.

The study further showed that the alternative methods are not sig-
ni�cantly outperforming each other, as each su�ers from a di�erent
type of problem. We observe an expected signi�cant preference for
the o�ine DIBR method over its real-time counterpart (60.0%). The
relatively small e�ect size even for this trivial comparison con�rms
that a detection of visual di�erences between videos is a di�cult
task. This further strengthens results achieved by our method.

8 DISCUSSION, LIMITATIONS, AND FUTURE WORK
Similarly to a pure Eulerian approach, our disparity re�nement is
limited to small disparity errors. Nevertheless, the total wavelet
disparity is not. This is because the wavelet disparity also includes
the component from the initial disparity. This allows our method to
outperform Lagrangian methods in many situations. For example,
additional re�nement steps performed by DIBR methods lead to
cardboard e�ects. These can be easily handled by our correction
(Figure 7, Scene 1, red). In ambiguous cases, such as re�ections, mo-
tion blur, etc., the initial disparity is usually wrong. However, these
phenomena usually correspond to lower luminance frequencies, for
which the range of corrections we can perform is su�ciently large
(Figure 7, Scene 2 and Scene 3, yellow). Our Eulerian-based correc-
tion cannot handle large errors in the initial disparity map. These,
however, usually correspond to untextured regions and although we
are not able to correct high frequencies in these areas, this does not
create severe artifacts, as the corresponding amplitudes are usually
low.

There are two aspects that distinguish our approach from other
multi-resolution techniques. First, we avoid the notion of search-
ing through a range and taking an optimal value. After the initial

disparity is estimated, all re�nements are expressed as closed-form
expressions on wavelet phases. Second, we do not propagate dispar-
ity across frequencies. This independent estimation is the strength
of our technique. This is also why our re�nement is not a coarse-to-
�ne method.

The main limitation in our disparity re�nement is that it can
only re�ne the disparity using the phase information at the partic-
ular wavelet. A large error in the initial disparity maps may lead
to incorrect view synthesis and ringing artifacts. Large occlusion
regions in the input can also cause signi�cant ringing artifacts in
the synthesis view. However, these regions typically have large
disparity, and our antialiasing may be able to reduce the artifacts.
Another limitation is that our method performs expansion only in
the horizontal direction. Although this is su�cient for standard
automultiscopic displays, it would be interesting to consider extend-
ing the technique to the vertical direction. Currently, our method
assumes that input views are already recti�ed. For future work, it
would be interesting to combine a real-time recti�cation technique
with our conversion. We also believe that our approach opens up
new ways of improving methods where view synthesis is necessary,
e.g., temporal interpolation.

Our technique does not apply any correction for transition arti-
facts [Du et al. 2014] which lead to a visible ghosting if the viewing
location for parallax and lenticular-based automultiscopic screens
is not optimal. This e�ect is purely a display limitation and not a
limitation of our technique. The artifacts can be observed in the
supplemental materials where a capture of a 4K autostereoscopic
screen is shown. In the future, it would be interesting to combine
our technique with a technique that compensates for such artifacts,
e.g., [Du et al. 2014].

9 CONCLUSIONS
In this paper, we have presented a method that opens the door to
practical 3D television systems at home. Our real-time method con-
verts existing stereoscopic content to a high-resolution, high-quality,
multi-view format that is suitable for automultiscopic displays. Our
approach leverages advantages of both Lagrangian and Eulerian
techniques by combining them into one method. This allows us to
handle larger disparities than the Eulerian approach can deal with
when applied alone, and to resolve di�cult cases such as motion blur,
depth of focus, and re�ections which are challenging for Lagrangian
approaches. To this end, we propose to decompose input images
to wavelet-like representations where disparity information is esti-
mated for each wavelet separately. This decomposition is later used
in our new wavelet-based view synthesis method which computes
necessary views for autostereoscopic displays. Additional steps such
as inter-view antialiasing or nonlinear disparity manipulations can
be easily integrated to provide content customization. Our method
operates locally, mostly on 1D scanlines, which allows for an e�-
cient implementation both using a GPU and an FPGA. Our hardware
implementation demonstrates that Eulerian techniques and their
combination with Lagrangian approaches are good alternatives to
hardware solutions that are based on a Lagrangian approach. Our
approach opens the door to having 3D television without glasses at
home.
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