
Supplemental Material for
“Fab Forms: Customizable Objects for Fabrication”

Maria Shugrina1 Ariel Shamir2 Wojciech Matusik1

1MIT CSAIL 2The Interdisciplinary Center Herzliya

1 Implementation Details

The operation nodes in our system fall into the following categories:
• Create Shape (all leaves have this category), e. g. Box
• Modify Shape, e. g. Scale
• Combine Shapes, e. g. CSG Union
• Conditional
• Loop

where bolded categories are abstract C++ classes that can have any
number of concrete implementations. Our data structures are flex-
ible enough to work with arbitrary node implementations, simply
linked into the binary. To demonstrate our method, we implement
Combine nodes for CSG operations and several custom Create
nodes, including a CreateOpenScad node that can evaluate ar-
bitrary [OpenSCAD] scripts. Our implementations rely on Trian-
gle [Shewchuk 1996], [Carve CSG], [Clipper], and, of course,
[OpenSCAD].

Each node implementation is governed by a unique set of pa-
rameters from a small number of types (int, bool, double,
vector).1 To deal with such different sets of parameters in a con-
sistent way, we use protocol buffers [Google] that enable one to get
and set parameters by type and name.

In addition, protocol buffers provide a handy way to read and
write trees of operations to and from file (i.e. using protobuf
MessageSet), and to save and recombine information about the
valid region after parallel precomputation. We also use format-
ted protocol buffers with fixed double precision as keys to the
GeometryCache.

Likewise, we implement precomputation in a fully general way to
accept designs of variable parameter types (bool, double, int)
and dimensionality of the parameter space. In order to deal with
continuous and discrete dimensions smoothly, we use a base C++
class Dimension. Subclasses of Dimension keep track of cuts
along their dimension and report whether or not a new subdivision
can be made. Each sample point is treated as a vector of doubles,
but internally stores the double, integer and boolean values.

We use Gecode [Schulte et al. 2010] to solve for linear and non-
linear constraints, and rely on OpenVDB [Museth 2013] for volu-
metric operations needed for the tests and ∆G computation.

2 ∆G as a Metric Space

Lemma: ∆G is a metric, where ∆G is defined as the symmetric
difference (XOR) of the volumes of two shapes A and B, normal-
ized by the volume of their union:

∆G(A,B) ,
|A⊕B|
|A ∪B|

Proof:
Non-negativity, symmetry: hold trivially.

1For some node implementations the set of parameters varies among
instances of the same implementation (e.g. CreateOpenScad nodes have
parameters that depend on the input script).

Figure 1: Space partitioned by three volumetric shapes, with re-
gions of overlap (potentially empty) labeled by variables.

Coincidence: ∆G(A,B) = 0 ⇔ A = B. ∆G is only zero if the
symmetric difference of two shapes is zero, and that holds if and
only if two volumes are identical.
Triangle inequality: ∆G(A,C) ≤ ∆G(A,B) + ∆G(B,C) for
all A, B, C. For any A, B, C, w. l. g. let the space be partitioned
according to which of the three shapes overlap in that region of
space, as shown in the Fig. 1, where each variable refers to the
volume of the corresponding region. Then, we can trivially state
the following identities:

|A⊕ C| = |A⊕B|+ |B ⊕ C| − (2vb + 2vac) (1)
|A ∪B| = |A ∪ C|+ vb − vc (2)
|B ∪ C| = |A ∪ C|+ vb − va (3)

Consider the expanded triangle inequality:

∆G(A,C)
?

≤ ∆G(A,B) + ∆G(B,C)

|A⊕ C|
|A ∪ C|

?

≤ |A⊕B|
|A ∪B| +

|B ⊕ C|
|B ∪ C|

Then, applying identities 1-3 we obtain:

|A⊕B|
|A ∪ C| +

|B ⊕ C|
|A ∪ C| −

2(vb + vac)

|A ∪ C|
?

≤

|A⊕B|
|A ∪ C|+ vb − vc

+
|B ⊕ C|

|A ∪ C|+ vb − va

Then carrying over and combinding terms:

−2(vb + vac)

|A ∪ C|
?

≤

(vc − vb) · |A⊕B|
|A ∪ C| · (|A ∪ C|+ vb − vc)

+
(va − vb) · |B ⊕ C|

|A ∪ C| · (|A ∪ C|+ vb − va)

Then simplifying and reapplying identities 2 and 3 in reverse:

− 2(vb + vac)
?

≤ (vc − vb) · |A⊕B|
|A ∪B| +

(va − vb) · |B ⊕ C|
|B ∪ C|

Then, reversing the inequality and collapsing the terms back:

2(vb + vac)
?

≥ (vb − vc) ·∆G(A,B) + (vb − vc) ·∆G(B,C)

It is sufficient to prove that the left expression is greater than or
equal to the maximum possible value of the right expression. This
happens when both terms on the right are positive, i. e. when vb >
vc and vb > va, and when both ∆G terms attain the maximum
possible value of 1. Thus it remains to show:

2vb + 2vac
?

≥ 2vb − vc − va

2vac ≥ −(vc + va)

This is trivially true, because all the volumes are nonnegative. �

References

Carve CSG. http://carve-csg.com.

Clipper. http://www.angusj.com/delphi/clipper.php.

GOOGLE. Protocol buffers. http://code.google.com/
apis/protocolbuffers/.

MUSETH, K. 2013. VDB: High-resolution sparse volumes with
dynamic topology. ACM Trans. Graph. 32, 3, 27:1–27:22.

OpenSCAD. http://www.openscad.org.

SCHULTE, C., TACK, G., AND LAGERKVIST, M. Z., 2010. Mod-
eling and programming with gecode. http://www.gecode.org/.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2d quality mesh
generator and delaunay triangulator. In Applied computational
geometry towards geometric engineering. Springer, 203–222.

http://code.google.com/apis/protocolbuffers/
http://code.google.com/apis/protocolbuffers/

