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Figure 1: Unexpected changes of disparity in stereoscopic 3D imagery, such as those introduced by cuts in S3D films, are challenging for the
audience. Using an eye-tracker, we recorded eye vergence responses of 16 subjects to step-like changes in disparity (left). Then, a model of
adaptation time was derived, and parameters for the average observer estimated. Having such a predictor enables, for example, optimization
of film editing operations to best match the human depth adaptation abilities (right). The colors of the lines connecting points of interest before
and after the cut visualize the corresponding vergence adaptation times. Pictures from Dracula 4D courtesy of Red Star 3D, www.redstar3d.com
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Abstract

Sudden temporal depth changes, such as cuts that are introduced
by video edits, can significantly degrade the quality of stereoscopic
content. Since usually not encountered in the real world, they are
very challenging for the audience. This is because the eye vergence
has to constantly adapt to new disparities in spite of conflicting
accommodation requirements. Such rapid disparity changes may
lead to confusion, reduced understanding of the scene, and overall
attractiveness of the content. In most cases the problem cannot be
solved by simply matching the depth around the transition, as this
would require flattening the scene completely. To better understand
this limitation of the human visual system, we conducted a series of
eye-tracking experiments. The data obtained allowed us to derive
and evaluate a model describing adaptation of vergence to disparity
changes on a stereoscopic display. Besides computing user-specific
models, we also estimated parameters of an average observer model.
This enables a range of strategies for minimizing the adaptation time
in the audience.

c© 2014 The Authors. This is the author’s version of the work. It
is posted here for your personal use. Not for redistribution. The defini-
tive version was published in ACM Transactions on Graphics 33(4) (Proc.
SIGGRAPH 2014). http://doi.acm.org/10.1145/2601097.2601148

1 Introduction

Over the past few years, stereoscopic 3D (S3D) technology has
been constantly developing, and by now it has become ubiquitous.
However, despite the significant improvements, not only in display
devices, but also in image generation, capture and post-processing
techniques, many consumers are still skeptical about the quality of
current S3D content and the future of the technology itself. These
concerns are usually related to naturalness, effortlessness, and over-
all appearance: S3D effect should not be a distraction.

The difficulty in S3D production is that it is not sufficient to produce
two good images in place of one to arrive at a good stereoscopic
effect [Zilly et al. 2011]. S3D is a strong illusion, since it isolates
only one real-world phenomenon, failing to reproduce many others,
a prominent example being the accommodation cue. This imposes
numerous restrictions on the production process: the depth range
and variation must not be too large, view-dependent effects need to
be handled correctly, images carefully registered, and so on.

In this work, we are concerned with rapid temporal changes of
disparity. Humans have a good understanding of the environment
they observe and move through, a so-called “mental image”, which
enhances their capabilities in focusing on different objects [Finke
1989]. However, when the scene is merely a sequence of shots
shown on a flat screen, it is easy to get confused or lose track of the
point of interest, due to, among other things, unexpected changes of
the location or the camera angle. Although less problematic in 2D,
this can be challenging in stereoscopic 3D. In this context, an unpre-
dictable and large change in disparity means that binocular fusion
is lost, and a confusing double image is seen (diplopia). Moreover,
the vergence system needs to quickly adapt to new conditions, in
spite of the conflicting goal of the interconnected accommodation
system. This has been identified as one of the sources of discomfort
in stereoscopic viewing [Hoffman et al. 2008; Lambooij et al. 2009].

The Hollywood style of combining shots developed into a set of
formal conventions that obey the dynamics of visual attention and
control the continuity of space, time, and action. In modern movies
cuts play the most important role (99% of all edits), while dissolves
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and wipes have vanished almost completely. An extensive analysis
by Cutting et al. [2011] shows that average shot duration over past
75 years has declined from ca. 15 s to ca. 3.5 s! Clearly, short shots
increase the viewer engagement by forcing eyes to quickly follow
newly appearing content. However, such accumulation of sharp cuts
challenges the visual system by requiring seamless adjustment of
vergence between many shots over a possibly wide range of depths.
This requires a different approach to editing, e. g., ultra-short “MTV-
style” shots need to be replaced by more slow-paced edits.

Nevertheless, modern movies are often simultaneously released in
2D and S3D, and one should not expect that directors, cinematog-
raphers, and editors will entirely give up on their artistic visions
and style merely for the sake of S3D medium limitations. Instead,
they apply different S3D post-production techniques to make depth
transitions natural and effortless for viewers. Such manipulations
range from simple depth manipulations and cross-dissolve types of
cuts to more sophisticated transitions, where multiple sequences
with gradually changing depth are combined [Owens 2013]. All
these manipulations are time-consuming and expensive, as they are
performed manually. For example, Owens [2013] pointed out that
the editing of transitions was one of the most challenging steps
in the post-production of the U2 concert recorded in stereoscopic
3D. Abrupt depth changes, well beyond the real-world experience,
should be also expected in action computer games.

To address the problem of rapid depth changes, we propose to relate
the transition quality to vergence adaptation time, instead of simpler
disparity difference. We present a series of experiments with human
observers, in which vergence responses were measured using con-
sumer S3D equipment and a high-framerate eye-tracker. This leads
to a simple model describing the vergence adaptation curve, given
the initial and target disparities. The model allows for prediction of
adaptation time after cuts, which facilitates its visualization and min-
imization. Impact of the optimization on the visual quality of S3D
content is demonstrated in a separate experiment. To our knowledge,
we are the first to apply such a principled approach to this problem.

In summary, we make the following contributions:

• measurements of vergence response to rapid disparity changes
defined by initial and target disparities;

• derivation and evaluation of a model relating disparity change
to vergence adaptation curve, along with average observer
parameters;

• interactive tool for visualization and minimization of adapta-
tion time.

2 Related Work

Here we overview basic findings on the eye vergence mechanisms,
with the main focus on S3D display conditions. We refer the reader
to a survey by Meesters et al. [2004] for an in-depth discussion of
other aspects of S3D display perception.

Vergence as a Dynamic Process The eye vergence is driven by
the depth changes of a target object, and can be performed with high
accuracy (error below 10 arcmin) both in the real world and S3D
display observation conditions [Okuyama 1998]. Other factors, such
as blur, proximity, target size, and luminance might affect vergence,
but to a lesser extent [Campbell and Westheimer 1959]. Vergence is
a relatively slow process when compared to other eye movements,
e. g., saccades (below 60 ms), and requires about 195–750 ms for
convergence and 240–1000 ms for divergence. Vergence latency also
demonstrates a similar asymmetric behavior with 180–250 ms for
convergence and 200–210 ms for divergence [Krishnan et al. 1973;
Krishnan et al. 1977; Semmlow and Wetzel 1979].

Vergence is a two-stage process, where at first the fast transient (a.k.a.
phasic) mechanism (reacts even for brief 200 ms flashes) brings the
vergence in the proximity of the target depth, and then the slower sus-
tained (a.k.a. tonic) mechanism is responsible for the precise verging
on the target, as well as further tracking of slower depth changes.
Semmlow et al. [1986] found that for less dynamic depth changes,
with the ramp velocity below 2 deg/s, only the sustained mechanism
is active, above 9 deg/s the transient mechanism dominates, and
otherwise both mechanisms are active. Vergence adaptation (similar
to luminance adaptation) has been observed in which the sustained
mechanism supports a given eye vergence angle, and comfort state
is achieved during binocular vision [Hung 1992]. For small depth
changes within Panum’s fusional area, the motoric vergence is not
activated, and sensoric fusion of images on the retina is sufficient.

Vergence vs. Accommodation While vergence is driven by
depth, and accommodation is driven mostly by retinal blur, both
systems are reflexively coupled, and they interact with each other
through accommodative vergence and vergence accommodation
[Hung 2001]. The accommodative vergence is quantified by the
AC/A ratio, which relates the change of vergence caused by the
change of accommodation in the absence of disparity. In an analo-
gous way, the vergence accommodation is quantified by the CA/C
ratio in the absence of blur. Since the range of accommodation
while viewing the S3D display is determined by the distance to the
screen, unnatural decoupling of vergence and accommodation is
required, which may cause visual discomfort and increase binocular
fusion times [Hoffman et al. 2008; Lambooij et al. 2009]. When the
screen disparity increases beyond Panum’s fusional area, vergence
eye movements bring the disparity back to this area, which shifts
accommodation away from the screen. When such a shift is beyond
the depth of focus (DOF) zone, the accommodative-vergence feed-
back is activated to counteract the loss of sharp vision, which in turn
directs vergence back towards the display [Lambooij et al. 2009].

The range of vergence angles that assure clear and single binocular
vision is known as the “comfort zone” [Shibata et al. 2011; Zilly et al.
2011]. In the real world, objects away from the fixation point are per-
ceived as blurred, which reduces the visibility of diplopia, because
the limits of fusion are higher for low spatial frequencies. Thus,
both accommodation and vergence response can be improved by
manipulation of convergence and local image defocus, respectively
[Ukai and Kato 2002; Zwicker et al. 2006].

In many practical S3D applications, the comfort zone is determined
by the disparity range of 70 arcmin [Lambooij et al. 2009; Zilly
et al. 2011]. Since it is a rather conservative bound, in this work
we assume a wider range of ±2.5 deg. Out-of-screen effects even
beyond this range are used in cinematography, but the object of
interest typically moves steadily off the screen in such cases, so
that the viewer can adapt to its extreme position [Zilly et al. 2011].
Achieving such extreme disparities would not be possible through
sudden jumps as in the case of scene cuts.

Vergence Measurements There is a large body of research on
measurements of vergence dynamics in response to pulse, step,
ramp, and sinusoidal disparity changes. For us, the step-like changes
are the most relevant. Most experiments used physical targets or
passively-shifted screens [Erkelens et al. 1989; Hung et al. 1994].
Simple stimuli, such as vertical lines, were used to eliminate other
cues that could affect vergence. Special care was taken to suppress
accommodation by using pinhole apertures for blur-free viewing. A
wide range of disparities ±35 deg have been considered [Erkelens
et al. 1989], but a typical range was below ±10 deg with relatively
large step amplitudes, typically larger than 2 deg [Hung 2001].

In this work we focus on the disparity range ±2.5 deg and lower



disparity step amplitudes, which are important for comfortable ex-
perience while viewing S3D displays. The assumed disparity range
corresponds approximately to the comfort zone in desktop view-
ing conditions given by Shibata et al. [2011, Fig. 23]. By using
an off-the-shelf S3D display in our experiments, and dealing with
real-world images in the validation step, we ensure that the condi-
tions are possibly similar to the ones in expected applications, where
accommodation and pictorial cues may affect the vergence. Also,
the initial disparity magnitude is important in our measurements,
both for the convergence and divergence case.

Vergence Modeling Schor [1979] and Hung [1998] proposed
sophisticated models of the eye vergence dynamics, which employ
the concepts of control engineering to simulate the transient and
sustained (a negative feedback loop) mechanisms. The models have
been extended to handle accommodation as well as the AC/A and
CA/C cross-link gains [Schor 1992; Schor 1999; Hung 2001]. An
extensive validation of such models against measurement data has
been performed; however, disparity steps interesting for us have
been treated marginally. Furthermore, the viewing conditions did
not force decoupling of accommodation and vergence.

While S3D displays have been considered in some computational
models, the main goal was to artificially alter the link between
the accommodation and vergence systems to study the change in
pre-task and post-task measures of AC/A and CA/C [Eadie et al.
2000], or to investigate developmental plasticity in children exposed
to S3D games [Rushton and Riddell 1999]. Alvarez et al. [2005]
experimented with constant-sized, 4 deg steps, and found that in case
of divergent steps, vergence dynamics are dependent on the initial
disparity. In this work, we propose a simple data-driven model of eye
vergence that is tuned to step-like disparity changes. We emphasize
here on vergence dynamics as a function of the initial and target
disparities, and our goal is minimization of the vergence adaptation
time at scene cuts through disparity editing.

Temporal Changes vs. Comfort Yano et al. [2004] report that
visual discomfort was induced if images were moved in depth ac-
cording to a step pulse function, even if the images were displayed
within the depth of focus. In a related work by Tam et al. [2012],
influence of disparity and velocity on visual comfort was investi-
gated, and a significant interaction between velocity and disparity
was shown. The negative effect of object velocity on visual comfort
was apparent even when the objects were displayed within the gen-
erally accepted visual comfort zone of less than 1 deg of horizontal
disparity. Results obtained by Lambooij et al. [2011] show that
rapidly moving objects and changing screen disparity indeed have
a significant effect on visual comfort; however, their dominant role
was not confirmed.

S3D Content Processing The problem of scene transitions is
challenging in the context of stereoscopic content, since scene tran-
sitions often create large temporal disparity discontinuities leading
to visual discomfort. To solve this problem, disparity adjustment
techniques are required. They are performed either during the acqui-
sition step by modifying camera parameters or in the post-processing
step using, for example, horizontal image translation [Mendiburu
2009]. However, only few techniques can deal with temporal effects.

Disparity velocity was considered one of the important factors for
disparity adjustment [Lang et al. 2010]. The authors proposed to
interpolate between different disparity ranges at scene cuts to reduce
large discontinuities in disparity. To this end, different disparity
mapping operators can be used to make this adjustment; however,
the decision of how this interpolation is defined was left to the
user. A simpler technique has been proposed by Koppal [2011]. He

suggested to solve the problem of transitions by cross-fading the
horizontal image translation to zero at the cut.

Bernhard et al. [2014] showed how binocular fusion times can be
reduced by means of active manipulation of the convergence plane.
The object of interest is brought back to the zero-disparity plane once
the change in gaze has been detected, but before the vergence adap-
tation is complete. In contrast to Bernhard et al.’s active approach,
we propose a cut optimization process that keeps the disparities con-
stant during the vergence adaptation. The improvement in our case
comes from more informed choice of the initial and target disparities.
Nevertheless, both approaches could be potentially combined.

Heinzle et al. [2011] proposed a computational camera rig, which
enables intuitive control over camera parameters. The artist’s in-
volvement is still needed, though, to design the transitions manually,
without any feedback on human abilities to adapt to rapid disparity
changes. Automatic control over camera parameters was proposed in
the context of real-time systems (e. g., games) [Oskam et al. 2011].
However, their primary goal was to maintain the scene disparity
range within given limits. This is not equivalent to minimizing the
vergence adaptation time, which depends not only on disparity dif-
ference but also the initial disparity value. In our approach, we take
those two factors into account.

More recently, a metric of visual comfort has been proposed [Du et al.
2013], which directly addresses the problem of temporal disparity
changes. The authors also suggest that it can be used for optimizing
stereoscopic parameters. However, their metric deals with motion,
and it is unclear how to apply their technique in the context of rapid
disparity changes such as those created during scene transitions.

3 Model Derivation

In this section, we experimentally derive and evaluate a model of
eye vergence response to step-like changes in disparity. We also
estimate model parameters for an average observer. The collected
data is useful in a number of applications, as shown in Sec. 4.

Participants Sixteen subjects (8 F, 8 M) took part in our exper-
iment. They were members of computer graphics and computer
vision groups, between 21 and 35 years old. All had normal or
corrected-to-normal vision, and all passed a test for stereo-blindness.

Equipment Stimuli were presented using an Nvidia 3D Vision 2
kit and an Acer GD235HZ 23.6-inch screen with native resolution
of 1920×1080. In order to measure the vergence responses, both
eyes were tracked using an EyeLink 1000 Plus eye tracker with a
desktop mount. The tracker records 1000 samples per second (500
per eye), allowing for fine-scale analysis of the vergence response.
The spatial accuracy according to the eye-tracker manufacturer is up
to 0.25–0.5 deg. A chin-rest was used to stabilize the subject’s head,
and the viewing distance was fixed to 55 cm.

Stimulus The stimulus in our experiment was a low-pass filtered
white-noise patch changing its disparity in discrete steps over time.
The patch was presented centrally on the screen, on a neutral grey
background, and it subtended ca. 11 degrees of visual angle. A sin-
gle trial consisted of a sequence of disparities d1,d2, . . . ,dn, chosen
from a fixed set D. The ordering of the disparities was random-
ized to avoid learning effect, but only Eulerian paths were used,
i. e., d1 = dn, and every possible transition appeared exactly once.
Since prediction has been shown to have influence on vergence re-
sponse (periodic disparity changes can be followed by vergence
without typical latency [Hung 1998]), the time between the onsets
of consecutive stimuli was set randomly between 1.25 s and 2.5 s.



Task Each session of the experiment started with a calibration
procedure, as described in the eye tracker manual. Next, every
participant had to perform m trials, and the task was to simply
observe the patch. The participants were encouraged to take breaks
whenever they felt tired, and after each break the eye tracker was
re-calibrated. The entire session took approximately 40 minutes.

Data Analysis After each session, binary output of the eye tracker
was converted to a plain-text version using the converter tool pro-
vided by the manufacturer. Next, the data was processed using a
custom parser to extract gaze coordinates and times of disparity
changes, and read into MATLAB R2012a. The times of stimulus on-
sets were marked in the output files with timestamps – a functionality
provided by the tracker’s API, which enabled easy synchronization
of the gaze data with stimuli. For each transition, we extracted the
1-second segment following it, smoothed using a small box filter,
and converted it to vergence values. Vergence was calculated as
the difference between the x-coordinates of the two gaze positions
expressed in pixels. Missing or unreliable samples (due to, e. g.,
blinks, saccades, or tracking errors) were interpolated linearly, and
the segments that required interpolation of more than 50% samples
were excluded. Data for transitions of one type was grouped, and
a curve was fitted to the average. Next, for each type of a transi-
tion, the time to reach 95% of the required vergence change was
determined, and two surfaces were fitted to the obtained data points.
Since we were interested in relative gaze positions, the significance
of drift was low. Moreover, adaptation times were determined by
the 95%-of-change position, which is not very sensitive to shifts,
scaling, etc. Based on these premises, we believe the precision was
sufficient for our purposes.

3.1 Pilot Experiment

In order to gain insight into the relation of vergence response to the
initial and end disparities, as well as to estimate the number of trials
m necessary for the response curves to converge, we conducted a
pilot study. In it, one subject (S7) performed m = 30 trials, with
di = 0,±30,±60,±90 px, and the cut-off frequency of the low-pass
filter f = 20cpd. This gave 30 · 7 · 6 = 1260 transitions measured.
The results are presented in Fig. 2.

Discussion The signal converged quickly, giving relatively
smooth data after ca. 5 repetitions, and little could be gained af-
ter ca. 10 repetitions. The vergence response can be modeled very
well by sigmoid functions of the form v = aebect

+ d, known as
the Gompertz curves. The 95%-point does not depend on param-
eters a and d, and can be obtained using the following formula:
p95 = ln(ln(0.95)/b)/c. The obtained data points can be modeled
almost perfectly using two planes, with mean error close to 0, and
standard deviation of ca. 27 ms. In light of these findings we de-
cided to limit the disparity values used in the main experiment to
di =±30,±90 px, and the number of repetitions m to 10.

3.2 Main Experiment

The aim of the main experiment was twofold: to confirm that ver-
gence times can be well modeled using two planes, as suggested
by the pilot experiment, and, if so, to estimate parameters of the
average-observer model, useful in practical applications. In this
experiment n = 16 subjects performed m = 10 trials (except subjects
S6, S9, and S10 for whom m = 5), with the cut-off frequency f = 10.
The range of disparities for subject S9 was reduced to 2/3, due to
reported problems with fusion. The results are presented in Fig. 3.

Discussion The average standard deviation of error after fitting
the planes to the obtained data equals 36 ms. This indicates a very
good fit, and justifies our assumption that the vergence adaptation
time can be modeled using planes. In particular, this means that the
data from subject S9, who saw rescaled disparities, could be easily
included in the average model.

As expected, our measurements show that given the initial disparity
and direction, steps with larger magnitude lead to longer vergence
adaptation times. An interesting finding is that the adaptation time
depends also on the step direction and initial disparity. Given the
initial disparity (Fig. 3, right, abscissae) and step magnitude (one
yellow and one green line per magnitude), steps towards the screen
are generally faster: To the right of the graph, yellow lines (con-
vergent steps) have lower times than the corresponding green lines
(divergent steps). To the left, this is reversed. Note, that corre-
sponding yellow and green lines intersect near the point of zero
initial disparity (screen plane). We hypothesize that it is related to
accommodation-vergence coupling, which attracts vergence towards
the screen plane, where the A/V conflict disappears.

Additionally, given the step magnitude and direction (Fig. 3, either
one yellow or one green line), with decreasing initial disparity, con-
vergent steps get slower whereas divergent steps get faster. This
effect could be convincingly explained by the amount of A/V conflict
which increases with disparity magnitude. At negative initial dispar-
ities, divergent steps work towards resolving the conflict, whereas
convergent steps work towards increasing it. With positive initial dis-
parities the roles are reversed. The larger the magnitude of the initial
disparity, the more stress is put on the visual system, and the demand
to resolve (or not to increase) the conflict is higher. Thus, the larger
discrepancy between convergent and divergent steps. These effects
should be taken into account while optimizing stereoscopic content,
as simple minimization of disparity difference will not necessary
lead to shorter adaptation times.

Another interesting finding is that with fixed target disparity, adap-
tation times for convergent steps are hardly dependent on the step
magnitude. This phenomenon, at first unintuitive, could be explained
by the A/V coupling as well: Larger step magnitudes, which should
intuitively contribute to longer adaptation times, may be offset by
varying initial stress exerted by the A/V conflict on the visual system.

In our experiment we considered only a computer display observed
at a relatively short distance. On the one hand, at larger viewing
distances the depth of field increases, thereby reducing the impor-
tance of the A/V coupling, the hypothesized cause of the observed
variation in vergence adaptation time. On the other hand, discomfort
induced by step-like motion in depth has been observed even for
disparities within the DOF [Yano et al. 2004]. Answering the ques-
tion, if similar effect of initial disparity on the adaptation time can
be observed in other viewing conditions, e. g., in cinema, requires
further investigation.

3.3 Evaluation

The obtained model was derived using simple stimuli (flat white-
noise patterns). On the one hand, this approach has several advan-
tages: the exact disparity is known, regardless of fixation points;
the measurements can be repeated easily; and the learning effect is
reduced, since the subject has no memory related to spatial arrange-
ment of objects in case of repeated images. On the other hand, it is
unclear how well the model predicts response to cuts between natural
images: the presence of complex luminance patterns or high-level
processes related to scene understanding may very well influence the
transition times. Therefore, we conducted a validation experiment,
to test if the model can be generalized.
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Participants and Stimuli Four participants (S3, S7, S11, and
S16) from original 16 were invited to take part in the evaluation of
the model. Six 3D photographs taken with an LG Optimus 3D P725
smartphone were used (see Fig. 4). They were divided into two
groups of three, one with smaller and the other with larger disparity
changes across pictures. The disparities in the picture were estimated
using the SIFT flow algorithm [Liu et al. 2011]. In a single trial a 6.5-
minute random sequence composed of the three photographs from
one of the groups was shown. As previously, a single appearance
of a picture lasted between 1.25 s and 2.5 s (chosen randomly), and
there were no breaks between appearances. The task was to simply
observe the pictures, and the participants were asked to perform one
trial for each group.

Data Analysis and Results After cleaning and segmenting of the
tracking data, a semi-automatic procedure was employed to group
segments of the same type, enabling averaging of measurements. In
the first, automatic step segments where a saccade occurred at the
time of the cut, or within the first 100 ms after the cut, were discarded.
Then, initial disparity was estimated using the disparity map and the
fixation coordinates just before the cut (initial fixation). The target
disparity was chosen using the following heuristic: whenever the
duration of the first fixation was shorter than 300 ms, the second
fixation was used; otherwise, the initial fixation was assumed to be

also the target fixation.

In the second, manual step, all segments were briefly reviewed to
correct filtering and target fixation errors. The false negatives were
the cases when the saccade near the cut was small enough not to
change significantly the vergence response. The false positives were
the non-typical cases, including, but not limited to, eye-tracker er-
rors, clearly incorrect vergence response indicating lack of fusion,
segments with unusually large saccade-to-fixation ratio, erratic sac-
cades indicating partial fixations, etc. In the end, 718 out of 3028
segments were discarded. We provide all annotated segments along
with a custom viewer/editor as additional materials, and encourage
the readers to inspect the data we used in this evaluation.

In the end, segments with the same initial/target disparities were
grouped; groups with 5 or more members were averaged and com-
pared against the model prediction for the respective subject. The
results of the experiment are presented in Fig. 5.

Discussion Although our prediction slightly overestimated the
time of transition for photographs, our model correlated well with
the actual time, as indicated by relatively low standard deviation of
the error. The study proves that our model is a good predictor (up
to an additive constant) of transition time for natural images. We
hypothesize that improved performance was due to the presence of
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Figure 4: The two groups of stimuli used in the evaluation, one with larger, and one with smaller disparity variation across pictures. The black
bars on the sides are floating stereoscopic windows added to avoid frame violation or large disparity steps at the edge (the shoe example).
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Figure 5: The results for subjects S16 (left) and S7 (right); plots for
subjects S3 and S11 are provided in the supplemental materials. The
planes show model predictions, whereas the solid circles represent
the observed data. The mean and standard deviation of the error for
subjects S16, S7, S3, and S11 are respectively 50±87ms, 5±62ms,
107±90ms, and 61±84ms.

higher-order cues, absent in white-noise stimuli, where the sole depth
cue was binocular disparity. It is also possible that the transition was
facilitated to some extent by the learning effect.

4 Applications

In this section, we propose a set of tools for aiding in the produc-
tion of stereoscopic content, that utilizes our model to minimize
vergence adaptation times. We also analyze the impact of the min-
imization on visual quality in one of the proposed tools using an
object-recognition experiment.

4.1 Production Tools

Transition Time Visualization A straightforward application of
the model is a visualization tool providing stereographers and VFX
artists with an interactive analysis of transition times. In order to
evaluate stereoscopic transition and estimate transition time, we
first need to determine the pairs of disparity values between which
the transitions occur. A naïve approach would be to measure the
transition time between corresponding pixels in both sequences;
however, it is not very useful, as in most cases people change the
fixation point immediately after the transition, and no change in
vergence happens (see the data browser provided in supplemental
materials). Therefore, the fixation points in both sequences need to
be precisely determined.

Such data can be obtained from various sources, e. g., it is possible
to use eye-tracker data. This does not require many subjects, as it

has been shown that eye scan-paths form highly repetitive patterns
between different spectators for the same video sequences [Wang
et al. 2012]. Moreover, skilled directors are capable of precisely
guiding and predicting viewers’ attention. Such prediction is further
facilitated by the tendency of increasing object motion in modern
movies [Cutting et al. 2011] and by the fact that typical 2D-movie
cuts trigger saccades towards the screen center [Mital et al. 2011;
Wang et al. 2012]. Thus, the information about fixation points for
our methods can be very reliably provided by the directors. Be-
sides, Carmi and Itti [2006] observed that the saccades immediately
after the cut are driven mostly by the bottom-up factors and can
be predicted relatively well by existing saliency models. Once the
fixation points before and after the cut are known, the corresponding
disparity values need to be determined. This can be obtained directly
from the rendering pipeline for animated movies, using user input in
the case of 2D-to-3D conversion, or using disparity estimation tech-
niques for natural scenes when the depth map is not available. Once
the fixation points along with disparity values are known, transition
times can be directly calculated from the model. Since computing
model predictions is inexpensive, it can be used to provide real-time
preview of transition times.

Camera Parameters Optimization Apart from predicting tran-
sition times and visualizing them for editing purposes, one can
automate the process of stereoscopic content preparation. An opti-
mization problem for cuts can be defined, and our model can serve
as the core of the cost function.

As discussed in Sec. 2, stereoscopic content can be optimized by
manipulating various parameters. These can be changed for the
entire sequence (e. g., from cut to cut), or selectively around the
cuts, with smooth blending back to original parameters [Lang et al.
2010; Koppal et al. 2011]. There is a wide range of manipulations
that can be used to adjust stereoscopic content. They range from
very simple ones, like changing camera separation and convergence
(i. e., the plane of zero parallax), to more complicated ones, such as
depth remapping. All such manipulations can be easily integrated
and used with our model.

Cut Positioning If the two sequences between which the cut oc-
curs overlap in time, it is also possible to find the best moment for
the cut. To this end, we optimize not only stereoscopic parameters,
but also the position of the cut. This can be performed efficiently
by simply iterating over all possible cut positions, in addition to
all horizontal shifts of the left/right views. The optimal cut can be
chosen automatically or can be shown to the editor as a suggestion.
The design of a tool performing these tasks is shown in Fig. 1, right,
and in the supplemental video.



4.2 Impact on Visual Quality

Visual quality can be defined in many ways, using various objective
and subjective criteria. In the following experiment, we focus on
the time necessary to recognize the 3D arrangement of objects after
a cut. We assume shorter recognition times to be an indicator of
higher quality. We measured the time needed to recognize object
arrangement, and showed that this time closely matches our model.
In practice, this means that when cuts are optimized using the pro-
posed production tools, the time necessary to recognize objects in
the scene is minimized.

Methods The equipment and viewing conditions were the same
as in other experiments, but no eye-tracker was used. As stimuli, we
used two shots corresponding to a cut in the 3D version of the Big
Buck Bunny animation. We modified them by placing two small dark-
gray circles between the eyes of the character, with approximately
the same disparity as the character (see Fig. 6, left, inset). Two 3D
arrangements of circles for each shot were considered: one with the
upper, and one with the lower circle closer to the observer. The dis-
parity difference between the circles was 2 px. The convergence in
the shots was modified so that the average disparity of the circles was
equal to di before and dt after the cut. Seven pairs of disparity steps
were used: −75→−105/90, −60→−90/−30, −30→−90/60,
0→−30/30, 30→−60/90, 60→ 30/90, and 75→−90/105 px.
For each initial disparity, both a convergent and a divergent step was
possible, which prevented anticipatory eye movements in subjects.
In order to determine the arrangement recognition time for all 14
steps, we performed 14 independent QUEST threshold estimation
procedures [Watson and Pelli 1983], each estimating time of 75%
correctness. A single trial of each procedure had the following struc-
ture: First, the first shot was shown for 2 s. Next, the second shot was
shown for a period between 0.1 and 1.5 s (controlled by QUEST).
The arrangement of the circles was chosen randomly in every trial.
After the screen was blanked, the subject was asked to indicate if
the arrangement was the same in both shots: If the same circle (i. e.,
upper or lower) was closer to the observer both before and after the
cut, the subject had to press the Y key, and the N key otherwise.
Such a task definition ensured that the subject actually performed
the vergence transition di→ dt . All 14 procedures were performed
in parallel, randomly interleaved. A session of the experiment lasted
20 min (average standard deviation in a QUEST instance 73 ms).
Subjects S3, S11, S12, S15, and S16 took part in the experiment.
S11 participated in three sessions, S16 in two, and the remaining
three in one session.

Results The data obtained using the above procedure was fitted
with two planes minimizing the RMSE. The planes obtained from all
subjects were averaged (first within subjects, then between subjects),
and compared to their average model. The results are presented in
Fig. 6. A corrective constant shift of 83 ms minimizes the RMSE,
and yields a low prediction error of 42 ms. This correlation implies
that optimizing camera convergence using our model instead of
disparity distance as the cost function will produce cuts with shorter
recognition times. Similar improvement can be expected when
optimizing other camera parameters or cut positions. This illustrates
the practical importance of our model for S3D games and films.

5 Conclusions

We proposed a new model which predicts the time a human ob-
server needs to adapt vergence to rapid disparity changes. We first
presented measurements of transition times for simple stimuli, and
demonstrated that these times are valid also for complex scenes. The
experiment revealed interesting facts about viewer behavior during
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Figure 6: Left: Stimuli used in the object recognition experiment.
Right: The results of the experiment; the gray planes represent the
obtained data after corrective shift of 83 ms, and the yellow/green
planes represent the average model of the subjects, predicting the
data with the RMSE equal 42 ms. Pictures from Big Buck Bunny CC-BY
Blender Foundation and Janus B. Kristensen

scene cuts, which provides valuable knowledge for stereoscopic
content creators. Additionally, we proposed a set of tools for the
editing of stereoscopic content to minimize the vergence adaptation
time after cuts. An important property of the proposed optimization
techniques is that the manipulations are applied only locally around
cuts, which has limited effect on the depth impression created by
the artist. To our knowledge, this is the first work that proposes
to automatically edit stereoscopic cuts taking into account varying
performance of the human visual system in adapting to rapid dis-
parity changes. Finally, we demonstrated the impact of minimizing
adaptation times on the visual quality of S3D content as measured
by a subject’s performance in the 3D object recognition task. An
interesting avenue for future work would be an extensive user study
quantifying how shorter transition times influence visual fatigue.
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