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Abstract

Single-image-based view generation (SIVG) is important
for producing 3D stereoscopic content. Here, handling dif-
ferent spatial resolutions as input and optimizing both re-
construction accuracy and processing speed is desirable.
Latest approaches are based on convolutional neural net-
work (CNN), and they generate promising results. However,
their use of fully connected layers as well as pre-trained
VGG forces a compromise between reconstruction accuracy
and processing speed. In addition, this approach is lim-
ited to the use of a specific spatial resolution. To remedy
these problems, we propose exploiting fully convolutional
networks (FCN) for SIVG. We present two FCN architec-
tures for SIVG. The first one is based on combination of an
FCN and a view-rendering network called DeepViewren.
The second one consists of decoupled networks for lumi-
nance and chrominance signals, denoted by DeepViewdec.
To train our solutions we present a large dataset of 2M
stereoscopic images. Results show that both of our architec-
tures improve accuracy and speed over the state of the art.
DeepViewren generates competitive accuracy to the state of
the art, however, with the fastest processing speed of all.
That is x5 times faster speed and x24 times lower memory
consumption compared to the state of the art. DeepViewdec

has much higher accuracy, but with x2.5 times faster speed
and x12 times lower memory consumption. We evaluated
our approach with both objective and subjective studies.

1. Introduction

Single-image-based view-generation (SIVG) is a tech-
nique to generate a new view image from a single im-
age. It has typically aimed to generate the right-view im-
age from a left-view image in stereoscopic viewing sce-

nario [32]. SIVG has been actively studied over decades
[32, 33, 15, 7, 28, 6, 7, 1, 3, 9, 23, 4, 18, 22, 17], as it
can be widely applied to provide richer representations and
important perceptual cues on image understanding as well
as 3D modeling [29, 28], etc. Especially, SIVG techniques
are becoming more and more important, as the dominant
portions of the 3D movie and virtual reality (VR) markets
are coming from 3D content production and consumption
[26, 2]. Furthermore, computationally efficient SIVG meth-
ods can bring significant benefits as many 3D contents are
consumed on mobile devices. In this paper, we focus on
both computationally efficient and accurate SIVG methods.

SIVG consists of two main stages: single-image-based
depth estimation (SIDE) and depth image-based-rendering
(DIBR) [32]. Mathematically, SIDE and DIBR can be for-
mulated as

D̂ = h(L|Θh), (1)

R̂ = g(L, D̂|Θg) (2)

where L, D̂, R̂ are the left-view image, estimated depth
map, and estimated right-view image, respectively. h(·) in
Eq. 1 and g(·) in Eq. 2 are considered SIDE and DIBR,
respectively. Θh in Eq. 1 and Θg in Eq. 2 are model param-
eters. This paper uses disparity and depth interchangeably
based on an assumption of the standard stereoscopic view-
ing condition where depth and disparity values are linearly
proportional [16].

Most existing approaches have focused on estimating ac-
curate depth maps, that is, they aimed to model h(·) in Eq.
1. Previous depth estimation approaches have relied on uti-
lizing one or a few depth cues in images, such as color [22],
scattering [7], defocus [33], and saliency regions [18]. A
recent breakthrough in depth estimation was achieved by
convolutional neural network (CNN)-based data-driven ap-
proaches [23, 9, 6]. Although these approaches showed
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remarkable performance improvement compared to previ-
ous hand-craft features-based approaches, DIBR in Eq. 2
should additionally be performed for SIVG, which often in-
volves much computation and visual distortion [32].

Recently, Xie et al. [32] proposed an end-to-end SIVG
method, called Deep3D. The network architecture of
Deep3D relies on a pre-trained CNN (VGG-16 Net [30])
with a rendering network. Deep3D showed the highest
prediction performance in SIVG compared with the CNN-
based depth-estimation methods followed by a standard
DIBR [33]. However, Deep3D requires large memory space
with much computational complexity as it relies on pre-
trained CNNs with fully-connected (dense) layers. Also,
the dense layers in Deep3D inevitably limit the spatial res-
olution of its input and output (i.e., 384×160), thus con-
straining flexibility and applicability. In order to remedy
the aforementioned problems, we propose to exploit a fully-
convolutional-network (FCN) for SIVG. Our work is in-
spired by the recent success of FCNs in super-resolution
[19, 24, 25].

Aspects of novelty in our work include:

1. We propose a new network for efficient SIVG by com-
bining an FCN with a rendering network. We call this
DeepViewren. Thanks to our simple and efficient FCN
architecture, DeepViewren runs x5 times faster than
the state of the art [32], with x24 times lower memory
consumption. It also achieves competitive prediction
accuracy.

2. We present a decoupled architecture for luminance and
chrominance signals, denoted by DeepViewdec. Here,
two networks train and infer the Y and CbCr signals
separately. This shows much higher prediction perfor-
mance than the state of the art [32]. However, with
only x2.5 times faster and x12 times lower memory
consumption.

3. Thanks to exploiting an FCN, our methods can
take input of various-sized images and outputs
correspondingly-sized ones. This spatial scalability
was not present in existing techniques, mainly due to
their dense layers.

4. We collected a very large dataset of 27 non-animated
stereoscopic movies having a total of 2M frames. To
the best of our knowledge, there are no sufficiently
large publicly available datasets for training SIVG. We
are planning to release all our code and data to encour-
age future research.

This paper is organized as follows: we review related
work and introduce our architectures in Section 2 and
3, respectively; we perform thorough experiments to ex-
plore efficient network architecture with spatial scalability;
we compare the proposed method with the state-of-the-art
SIVG method in Section 5; Section 6 concludes our work.

2. Related Work

Our work exploits the advances of FCNs in super-
resolution and rendering network in view generation.

FCN-based super resolution Our architecture is inspired
by recent success of FCN in super resolution problems
[19, 20, 8, 25]. Dong et al. proposed a three layered FCN
and showed powerful performance in both accuracy and ef-
ficiency. Kim et al. further extended the work in [8] by es-
tablishing a very deep (20 layered) FCN architecture [19].
To boost the network convergence, they adopted a residual
learning and gradient clipping method [19]. Very recently,
Mao et al. proposed a symmetric skip connection between
encoding and decoding networks to transfer high frequency
details to the output [25]. All results in [8, 20, 25] reveal
that FCNs can be effectively applied for per-pixel regres-
sion problems with much efficiency and accuracy.

Monocular depth estimation Recently, CNN-based
monocular (single image) depth prediction methods have
shown promising performance in accuracy compared to
previous hand-craft features-based approaches [23, 9, 6].
Eigen et al. proposed a multi-scale CNN to secure large
receptive field sizes [9]. Here, the receptive field size in
CNN corresponds to the range of contextual information
used for inference. Results show securing large-receptive
fields in a network is important for monocular depth pre-
diction since it reduces uncertainty of depth relations be-
tween different objects. Liu et al. incorporate a CRF learn-
ing scheme into CNN in order to estimate accurate depth
maps from a single image [23]. To make the CRF-learning
within CNN tractable, they derived a closed form solution.
Chen et al. introduced a new dataset called Depth In the
Wild (DIW), consisting of relative depth points taken in
unconstrained settings [6]. They trained an inception-like-
network to generate a relative depth metric. This widens
the applicability of monocular depth prediction methods.
Although existing SIDE methods show good accuracy in
mapping an image to depth, the estimated depth-maps are
intermediate representations in SIVG and and hence still re-
quire a DIBR process. Such process is often computation-
ally expensive and prone to errors. Compared to existing
depth-estimation methods, our approach is an end-to-end
mapping that efficiently combines SIDE and DIBR into one
network. Hence, we do not need a separate DIBR block.

View generation Recently, Flynn et al. proposed Deep-
Stereo that takes a set of calibrated images as input and
outputs images of new views [10]. DeepStereo consists
of a rendering network and a color image generation net-
work. The rendering network generates probabilistic dis-
parity maps and renders a new view by multiplying the dis-
parity maps with outputs of the color image generation net-
work. Very recently, Xie et al. proposed an end-to-end
SIVG method [32] based on a pre-trained CNN (VGG-16
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Figure 1. DeepViewgen architecture. The encoding, decoding and
rendering networks are shown in green, blue and yellow respec-
tively. The encoding network extracts low, middle and high level
features from the input image and transfers them to the decoding
network. After decoding, the rendering network generates proba-
bilistic disparity maps and estimates the right-image. Here, a set
of translated images are used (see Fig. 2).

Net [30]) and the rendering network. To estimate a right-
image from a single left-image, Deep3D extracts features
from the pre-trained network. The extracted features are
up-scaled with deconvolution layers (i.e., convolution lay-
ers with strides over 1) and are directly fed into the ren-
dering network. Finally, the rendering network generates a
right-view image.

Fully connected (dense) layers in pre-trained networks
have limited input/output dimensions. This constrains the
input/output sizes of the whole network. Such constraint
may not be problematic for image classification problems
[30]. However, it can limit the applicability of rendering
techniques for two main reasons: 1) The rendering quality
is directly related to the spatial resolution 2) Images com-
monly come in different sizes [19]. Compared to Deep3D,
our work takes various-sized images as input and outputs
correspondingly-sized images in a single network. This is
due our use of FCN without any dense layer or pretrained
models.

3. Proposed method

FCN with rendering network Fig. 1 illustrates our
DeepViewren architecture. The green, blue and yellow col-
ors define the encoding, decoding, and rendering networks,
respectively. Conceptually, the encoding network extracts
low, middle and high level features from the input image
and transfers them to the decoding network. After decod-
ing, the rendering network generates probabilistic dispar-
ity maps. The right-image R̂ is rendered using the set of
images translated by the disparity range Ω. In this paper,
we establish an FCN architecture based on units of convo-
lution modules (M ) each of which consists of a set of K

Figure 2. The rendering network. The softmax layer normal-
izes the output of the decoding network to probabilistic val-
ues over channels (Pi, i ∈ Ω). Here, the number of chan-
nels is identical to the number of values in a disparity range
Ω = {−N,−N + 1, ..., 0, 1, ..., N}. The final right-view image
R̂ is synthesized by pixel-wise multiplication between P and their
correspondingly-translated left-images L.

convolution layers followed by an activation unit. We use
rectification linear units (ReLU) for activation. The encod-
ing and decoding networks comprises total 9 modules (Mi,
i = 1, ..., 9) having a total of 9 ·K convolution layers in our
architecture. For simplified description, we denote the j-th
convolution layer in the i-th convolution module as Convi,j .
Note that ReLU is not applied for the last convolution layer
of the decoding network as the rendering network contains
a softmax activation unit. This normalizes the output of the
decoding network.

Estimating depth requires wide contextual information
from the entire scene [9]. In order to secure large receptive
fields for our network, we propose to use multiple down-
scaling and up-scaling convolution (deconvolution) layers
with strides of 2 and 0.5, respectively. That is, the first con-
volution layers of Mi, i = 1, ..., 4 convolve with a stride of
2, and the last convolution layers of Mi, i = 6, ..., 9 con-
volve with a stride of 0.5. As in [25, 13], we adopted the
skip connections with additions which transfer sharp ob-
ject details to the decoding network. That is, the outputs of
Conv1,K−1, Conv2,K−1, Conv3,K−1, and Conv4,K−1 in the
encoding network are connected to the inputs of Conv6,2,
Conv7,2, Conv8,2, and Conv9,2 in the decoding network, re-
spectively.

Fig. 2 shows the rendering network. The softmax layer
normalizes the output values of the decoding network to be
probabilistic values over channels (Pi, i ∈ Ω), wheres the
number of channels is identical to the number of values in a
disparity range Ω = {−N,−N + 1, ..., 1, 0, ..., N}. Since
the softmax layer approximates the max operation, it gives
sparsity in selecting disparity values at each pixel loca-
tion. The final right-view image R̂ is synthesized by pixel-
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Figure 3. DeepViewdec architecture. DeepViewdec consists of two
decoupled networks having the same architecture, i.e., luminance
(Y) and chrominance (Cb, Cr) network. Each network is trained
separately.

wise multiplication between P and their correspondingly-
translated left-images L, which can mathematically be ex-
pressed as

R̂(x, y, c) =
∑
i∈Ω

Pi(x, y)Li(x, y, c) (3)

where (x, y) ∈ H ×W is the pixel index in a H ×W -sized
image, and c is the index for RGB color channels.

Decoupled network Fig. 3 illustrates our decoupled struc-
ture DeepViewdec. This structure processes the chromi-
nance and luminance channels separately. It consists of two
decoupled networks having the same architecture, i.e., lumi-
nance (Y) and chrominance (Cb, Cr). Each network trains
and infers separately. The green, blue colors in each net-
work define the encoding and decoding networks, respec-
tively, while the yellow color indicates the color conversion
block between RGB and YCbCr. The RGB-image-input is
converted to Y, Cb, and Cr images where Cb and Cr im-
ages are further downscaled with factor of 2. Conceptually,
the encoding network extracts low, middle and high level
features from the input image and transfers them to the de-
coding network. The inferred images by the decoding net-
work are inverted to the output RGB image. Note that the
luminance network is trained with only Y channel images
while chrominance network is trained with both Cb and Cr
channel images.

4. New dataset for SIVG
There are some large RGB-depth (or relative depth)

databases, such as KITTI[11], NYU [29] and DIW [6].
Such datasets have effectively been used for training and
testing depth-estimation methods. To the best of our knowl-
edge, there are no publicly available large datasets of stereo-
scopic image pairs. In this paper, we introduce a new large
dataset for SIVG. Our dataset is collected from 27 non-

Figure 4. Some thumbnail-images of our dataset of 2M stereo-
scopic image pairs.

animated stereo movies having Full-HD (1920×1080) reso-
lutions. Fig. 4 shows some thumbnail-images of our dataset
containing a variety of genres including action, adventure,
drama, fantasy, romance, horror, etc. For generating the
dataset, we eliminated the text-only frames at the beginning
and ending of the movies. The final valid frames have to-
tal 42.5 hours duration with 2M frames. We will publicly
release our dataset for research purpose.

5. Deep analysis of the proposed method
We perform comprehensive experiments to explore op-

timal network architectures for SIVG in terms of predic-
tion accuracy and computational efficiency. We also explore
spatial scalability of our method.

5.1. Implementation details

Our architectures are implemented based on MatCon-
vNet, a Matlab-based CNN library [31]. During training,
we minimize the mean squared error (MSE) over training
data, i.e., MSE = (Z−1)||R̂−R||2F , where Z is the number
of pixels in an image, and ‖·‖F is the Frobenius norm.

Regarding the number of convolution layers, we setK =
4 for each module (M ) as a default setting by considering
trade-off between accuracy and efficiency. This leads to to-
tal 36 convolution layers in our architectures. We set the
filter size of each convolutional layer to 3 × 3 × 64 × 64
∈ RH×W×D×C (for deconvolution layers, we set their fil-
ter sizes to 4×4×64×64), where C is the number of filters
in a convolution layer, and H , W and D correspond to the
height, width and depth of each filter.

For the last convolution layer in the decoding network
of DeepViewren, we set its filter size to 3 × 3 × 64 × 33
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as we set disparity range Ω = {−15,−14, ..., 16, 17}. For
DeepViewdec, the number of filter in the last convolution
layer is 1 as its input and output are Y or CbCr.

To optimize the network, we use Adam solver with β1 =
0.9, β2 = 0.9999, ε = 10−8 [21]. We set the training-
batch-size to 64. To initialize the weights in convolution
layers, we followed the method of [12]. We trained our
networks with a total of 30 epochs with the fixed learn-
ing rate of 10−4. It takes one day for training in a single
Nvidia GTX Titan X GPU with 12GB memory. The afore-
mentioned training configurations are identically used in all
experiments unless otherwise mentioned.

Since there are no publicly available SIVG datasets, we
use our dataset introduced in Section 4. Our dataset con-
sists of 27 non-animated stereoscopic movies. We divided
them into 18 training and 9 testing movies, such that there
is no overlap between the training and testing datasets. To
reduce computational complexity for training, we selected
training/testing frames every 2 seconds among a total of 2M
frames, resulting in 58K training frames and 22K testing
frames. For all the training/testing frames, we performed
a downscaling process by preserving the frame aspect ratio
and slightly cropped the upper and lower pixel boundaries,
such that the spatial resolution of all the training/testing
frames becomes 384×160.

To measure computational efficiency, we use memory
consumption (#Param), i.e., the number of weight and bias
values used in convolution and batch-normalization layers.
Those parameters should be kept in the memory during the
entire process. Also, the average running speed in frames
per second (fps) is measured for all the testing images. We
use MSE and mean absolute error (MAE) to measure pre-
diction accuracy. MAE is calculated as E[|R̂ − R|], where
E[·] is expectation operator over pixels in an image. Note
that, higher fps indicates higher performance, while higher
#Param, MSE and MAE mean lower performance.

5.2. Effectiveness of rendering network

We verify the effectiveness of the rendering network in
DeepViewren by performing experiments on DeepViewren

with and without the rendering network. Table 1 shows the
performance of DeepViewren with and without the render-
ing network. As shown in Table 1, the rendering network
improves prediction accuracy in terms of MSE and MAE.
It also does not introduce noticeable computational com-
plexity in both fps and #Param. This is because the ren-
dering network explicitly performs pixel-translations of the
left-image and selects the best translation based on the gen-
erated disparity maps.

5.3. Spatial scalability

Our architectures have spatial scalability, i.e., they can
support multiple input/output sizes in a single network.

Method without RN withRN
fps 52.19 51.18

#Param 1.40M 1.40M
MSE 218.04 213.04
MAE 5.77 5.54

Table 1. Performance of DeepViewren with/without the rendering
network (RN).

Test\Train Scale4 Scale5 Scale6 Scale4,5,6

Scale4
MSE 216.18 218.79 220.48 218.79
MAE 5.67 5.70 5.79 5.70

Scale5
MSE 217.49 213.04 219.49 217.86
MAE 5.74 5.54 5.75 5.66

Scale6
MSE 197.20 194.12 193.58 195.13
MAE 5.68 5.44 5.34 5.47

Table 2. Prediction performance of DeepViewrec for different
scale training/testing datasets.

To verify the spatial scalability, we train DeepViewrec

for various-sized images. In order to generate the train-
ing/testing with different spatial resolutions, we use the
same 18 and 9 movies for training and testing, respectively,
as described in Section 5.1. However, here we downscaled
the data with different factors of (4, 5, 6). This generates
3 datasets of the same content but at different scales. We
use this data to train our DeepViewrec. We performed four
trainings. The first three train each scale separately while
the last trains all scales together at once. The performance
of each model is calculated. An architecture is scalable if
the testing performance of all the all scales model is similar
to the performance of the scale-specific model.

Table 2 shows the prediction performance of
DeepViewrec for different scale training/testing datasets.
As shown in Table 2, the dedicated model for each scale
shows the lowest error in correspondingly-sized testing
data. While the performance of the trained model with
all the scales also approximates all the testing data. This
indicates that our approach can support spatial scalability in
a single network. Fig. 4 shows the qualitative performance
of DeepViewrec for three different spatial resolutions
(320×128, 384×160, and 480×192). In Fig. 4, the upper
and bottom rows illustrate the estimated right-view images
and their ground-truth, respectively. As shown in Fig. 4,
DeepViewrec is able to estimate right-view images for three
different spatial resolutions consistently in a single net-
work. Therefore, contrary to the existing method requiring
dedicated networks depending on different spatial scales,
our architectures can effectively be used for practical
applications in a single network.
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Figure 5. Qualitative performance of DeepViewrec on three different spatial resolutions (320×128, 384×160, and 480×192).

6. Experiments

To verify the effectiveness of our architectures, we com-
pare them against the state of the art Deep3D [32]. Note that
we do not compare our approach with the existing depth-
estimation methods, since they require an additional DIBR
process to generate right-images. This often involves much
computation and visual distortion [32]. It is shown in [32]
that Deep3D remarkably outperforms the existing depth-
estimation method followed by a DIBR.

6.1. Objective performance

In the objective performance evaluation, we compare
the estimated right-images with their ground-truth right-
images. We also report the baseline performance that
is measured with the ground-truth left- and right-images,
(i.e., ground-truth left-images are considered estimated
right-images in baseline). Table 3 shows the predic-
tion performance of baseline, Deep3D, DeepViewren and
DeepViewdec. The best performance in each column
is highlighted in black bold. As shown in Table 3,
Deepren shows competitive performance to Deep3D while
DeepViewdec outperforms both baseline and Deep3D for
both MSE and MAE.

Fig. 6 shows the qualitative performance of baseline,
Deep3D and DeepViewdec. In Fig. 6, the first, second
and third columns are results of Deep3D, DeepViewdec

and ground-truth, respectively. Each row in Fig. 6 con-

Method MSE MAE
Base 259.54 6.23

Deep3D 213.40 5.72
DeepViewren 213.04 5.54
DeepViewdec 190.27 5.46

Table 3. Prediction performance of baseline (Base), Deep3D,
DeepViewren and DeepViewdec. The best performance in each
column is highlighted in black bold.

sists of the estimated right-view image and depth map mea-
sured with original left-view and estimated right-view im-
age pairs. The disparity maps are estimated by using a
block-based stereo-matching method [14]. Note that our
method does not aim at estimating accurate disparity maps.
The disparity maps in Fig. 6 are illustrated only to show the
consistency between the estimated right-view images and
their ground-truth in depth perception. As shown in Fig.
6, the proposed DeepViewdec produces sharper edges (in
the red and yellow boxes) and depth consistency with the
ground-truth compared to Deep3D.

6.2. Subjective performance evaluation

We perform subjective quality assessment experiments
to verify the effectiveness of DeepViewdec. For this, we
use stereoscopic images made with the pairs of original
left-view images and estimated right-view images. Table
3 summarizes the experimental setup for our subjective ex-
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Figure 6. Qualitative performance comparison of Deep3D and DeepViewdec with ground-truth. The red and yellow boxes show that our
DeepViewdec tends to produce sharper edges compared to Deep3D.

Display ZM-M240W, Polarized 3D
(24 inch, 1920×1080 Full-HD)

# Subject 15 (12 male, 3 female)
(mean age: 29.8)

Viewing distance 0.5m
Ambient illum. 200 lux
Testing image size 384×160

Table 4. Experimental setup for subjective quality assessment.

periments.

We randomly select 100 image pairs from the testing
dataset and used the adjectival categorical judgment method
[27] where the reference ground-truth stereoscopic images
(made with original left- and right-view images) and the
compared stereoscopic images (made with original left- and

estimated right-view images) are vertically juxtaposed with
pseudo-random order. In the adjectival categorical judg-
ment method [27], the subjects evaluate their perceived
qualities of the presented images being compared. The
comparison scale for the comparison images is given with
-3 as ‘Much worse’, -2 as ‘Worse’, -1 as ‘Slightly worse’,
0 as ‘The same’, +1 as ‘Slightly better’, +2 as ‘Better’, +3
as ‘Much Better’ against their reference images. Note that
the negative scales imply that the compared stereoscopic
images are perceived worse than ground-truth ones. The
individual comparison scores are provided in average as
mean opinion score (MOS). As a result, the MOS values
of the proposed DeepViewdec and Deep3D were −0.37 and
−0.48, respectively. This indicates that DeepViewdec pro-
duces better visual quality compared to the state-of-the-art,
Deep3D.
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Method Deep3D DeepViewrec DeepViewdec

fps 9.57 52.19 23.92
#Param 33.52M 1.40M 2.80M

Table 5. Comparison of Deep3D and DeepViewdec in terms of
#Param and fps.

6.3. Computation efficiency

The memory consumption in #Param. and computa-
tion speed in fps between Deep3D and DeepViewdec are
compared. Note that our DeepViewdec is implemented on
Matlab with MatConvNet library while Deep3D is imple-
mented on Python with MXNet [5]. For a comparison, we
implemented the same architecture of Deep3D on Matlab
with MatConvnet and measured the running speed. Table.
5 compares Deep3D and DeepViewdec in terms of mem-
ory consumption in #Param and running speed in fps. As
shown in Table. 5, DeepViewdec runs 5.1 times faster with
24 times lower memory consumption. Note that the heavy
computation and memory consumption of Deep3D comes
mostly from the high-level convolution layers and the dense
layers in the pre-trained CNN. Those layers help the net-
work capturing global contextual information in a whole
image. Contrary to Deep3D, we use multiple up- and down-
scale convolution layers with symmetric encoding/decoding
networks to secure large receptive field sizes. Most convo-
lution layers in our network have 3×3×64×64 filter sizes,
requiring relatively much lower computation complexity
and memory consumption compared to the convolution and
dense layers used in Deep3D.

7. Conclusion
We proposed the use of fully convolutional networks for

the problem of novel view synthesis from single images.
Our solution directly learns the transfer from the left in-
put image to the right image, without explicit estimation of
depth maps. We presented two architectures with the aim to
reduce prediction error as well as the computational com-
plexity and memory consumption. One network makes use
of a rendering network while the other is based on separated
decoupled processing for the chrominance and luminance
channels. The former network achieves competitive perfor-
mance however with significantly less computational and
memory consumption (x5 times faster speed with x24 times
lower memory consumption). The decoupled structure is
slightly more expensive, but significantly less prediction er-
ror than the state of the art. We also presented a large dataset
of stereoscopic movies suitable for training such networks.
We examined our network through objective and subjective
measures. Future work can address utilizing other types of
input data (e.g., depth and segmentation) for better perfor-
mance.
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