
Functional Optimization of Fluidic Devices with Differentiable Stokes
Flow

TAO DU,MIT CSAIL
KUI WU,MIT CSAIL
ANDREW SPIELBERG,MIT CSAIL
WOJCIECH MATUSIK,MIT CSAIL
BO ZHU, Dartmouth College
EFTYCHIOS SIFAKIS, University of Wisconsin-Madison

Optimized shape
Design space:
- NURBS control points
- Rotation angle ϕ about z-axis

Target outlet

Optimized outlet

10

Target outlet

Optimized outletTask 1: rotate 0°

Task 2: rotate ϕ°

Velocity0

ϕ

Di�erentiable Stokes flow
simulation

Gradient-based optimization

Fig. 1. Our system automates the design of fluidic devices with differentiable stokes flow. Given a parameterized design in the form of NURBS
surfaces or curves (leftmost) that separate rigid boundaries from fluid flow, we employ a Stokes flow (second from left) that evaluates the performance
of this design. The flow is differentiable and gradients can be quickly evaluated, enabling gradient-based optimization (center) of the control points,
and thus, the boundary. The optimized design (rightmost) can be specified to operate in one configuration or several. This example features an
optimized fluidic rotational switch that shifts flow from the top outlet path to the bottom outlet path when turned.

We present a method for performance-driven optimization of fluidic devices.

In our approach, engineers provide a high-level specification of a device

using parametric surfaces for the fluid-solid boundaries. They also specify

desired flow properties for inlets and outlets of the device. Our computa-

tional approach optimizes the boundary of the fluidic device such that its

steady-state flow matches desired flow at outlets. In order to deal with com-

putational challenges of this task, we propose an efficient, differentiable

Stokes flow solver. Our solver provides explicit access to gradients of perfor-

mance metrics with respect to the parametric boundary representation. This

key feature allows us to couple the solver with efficient gradient-based opti-

mization methods. We demonstrate the efficacy of this approach on designs

of five complex 3D fluidic systems. Our approach makes an important step

towards practical computational design tools for high-performance fluidic

devices.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: Physically-based simulation, fluid simu-

lation, computational design optimization

Authors’ addresses: Tao Du, MIT CSAIL, taodu@csail.mit.edu; Kui Wu, MIT CSAIL,

kuiwu@csail.mit.edu; Andrew Spielberg, MIT CSAIL; Wojciech Matusik, MIT CSAIL,

wojciech@csail.mit.edu; Bo Zhu, Dartmouth College, bo.zhu@dartmouth.edu; Eftychios

Sifakis, University of Wisconsin-Madison, sifakis@cs.wisc.edu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

0730-0301/2020/12-ART197

https://doi.org/10.1145/3414685.3417795

ACM Reference Format:
Tao Du, KuiWu, Andrew Spielberg,WojciechMatusik, Bo Zhu, and Eftychios

Sifakis. 2020. Functional Optimization of Fluidic Devices with Differentiable

Stokes Flow. ACM Trans. Graph. 39, 6, Article 197 (December 2020), 15 pages.

https://doi.org/10.1145/3414685.3417795

1 INTRODUCTION
Fluidic devices are key building blocks for a variety of ubiquitous

products, including medical diagnostic devices, filtration systems,

bioreactors, internal combustion engines, hydraulic actuators, and

even cooling manifolds for GPUs. However, designing complex flu-

idic devices is challenging as it requires expert knowledge and typi-

cally many trial-and-error iterations. These challenges promote the

importance of finding computational strategies for simulating and

designing these structures. Unfortunately, such approaches are chal-

lenging. Brute-force, high-resolution, physics-based simulations of

fluidic systems are inherently slow and highly sensitive to geometric

configurations and initial conditions, limiting progress in methods

for computationally designing fluidic devices with high resolution

and complex functions. Furthermore, performance-driven design

methods (also often referred to as inverse methods) require using an

expensive fluid simulation within a numerical optimization method.

This effectively makes current approaches for performance-driven

optimization impractical.

In this work, we present a first step toward functionally optimiz-

ing the design of fluidic devices, focusing on the more tractable

Stokes flow, which is well-suited for the behaviors of desired fluidic

functionality. Stokes flow assumes that fluid velocities are slow and

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

https://doi.org/10.1145/3414685.3417795
https://doi.org/10.1145/3414685.3417795
https://creativecommons.org/licenses/by-nc-sa/4.0/

197:2 • Du et al.

fluid viscosity is relatively large (the Reynolds number Re ≪ 1).

Additionally, in our approach, we use a parametric shape represen-

tation of a fluidic system – fluid-solid boundaries are represented

using parametric surfaces. This has the advantage that the design

process is intuitive for the designer (e.g., a designer specifies an

initial shape). At the core of our approach is a differentiable Stokes

flow simulator that efficiently solves not only the fluidic dynamics

but also the gradients of the dynamics with respect to design param-

eters. This capability allows us to use this solver as a building block

for gradient-based optimization algorithms when performance ob-

jectives (e.g., target fluid flows at inlets or outlets) are specified.

Overall, our framework unlocks fast fluid flow simulation and gra-

dient computation, making it amenable to continuous optimization.

Our proposed method shares similarities with topology or shape

optimization, the two prominent techniques in engineering practice

for functional design of fluidic devices [Alexandersen andAndreasen

2020]. The vast majority of prior methods focus on topology opti-

mization for steady-state laminar flows paired with no-slip bound-

ary conditions only [Behrou et al. 2019; Borrvall and Petersson

2003; Gersborg-Hansen et al. 2005; Lin et al. 2015]. While topology

optimization yields a geometrically expressive design space, this

combination of rasterized and highly frictional boundaries limits

both the realism and the functional expressiveness of the optimized

designs. A less prevalent but more recent line of research is shape

optimization of fluidic devices [Villanueva and Maute 2017; Zhou

et al. 2018], which is more related to our method. However, to our

best knowledge, existing demonstrations from these papers are still

coupled with no-slip boundary conditions only, and discussions

on extensions to flexible boundary handling in shape optimization

are sparse. Our method is in sharp contrast to prior as it simulta-

neously accommodates smooth parametric shape representations

and handles explicit, versatile boundaries. We focus on spline-based

parametric boundaries, which naturally yield smooth flows. Further,

such parameterizations are low-dimensional (more tractable), more

intuitive to reason about, and guarantee physically fabricable de-

vices (i.e., no floating components) when compared with voxel-based

parameterizations. Finally, with the careful treatment of sub-cell

discretizations in our method, we support various boundary condi-

tions (e.g., no-slip, traction, or no-separation boundary conditions)

that allow the emergence of laminar flows in scenarios where such

behavior would be anticipated.

To demonstrate the efficacy of our approach, we run performance-

driven optimization for the design of complex 3D fluidic systems,

including flow averagers, funnels, superposition gates, twisters, and

switches. For each example, an engineer starts by specifying an

initial fluid-solid boundary with splines, which are all easily pa-

rameterized with fewer than 50 degrees of freedom. The engineer

then specifies a fluid flow at the inlets of the system and target

fluid flow to be optimized at the system’s outlets. For all examples,

our approach manages to return an optimized design that signifi-

cantly improves the performance of the device within less than 50

optimization iterations. Furthermore, we demonstrate in our fluidic

switch example that our approach supports multifunctional design

optimization over continuously varying input velocity configura-

tions.

To summarize, our paper contributes the following:

• a differentiable Stokes flow simulator with a continuous repre-

sentation of the fluid-solid interface that naturally fits within

an optimization framework;

• a sub-cell discretization paradigm in Stokes flow simulation

that supports flexible boundary conditions, including no-slip,

traction, and no-separation boundaries;

• an optimization pipeline for computational design of multi-

functional fluidic devices with continuously varying input

velocity configurations.

2 RELATED WORK
Fluid simulation. Simulation of fluid flows has been a staple of

physics-based animation, relying predominantly on the Navier-

Stokes equations to capture the dynamics of motion in media such

as smoke [Fedkiw et al. 2001; Stam 1999] and water [Enright et al.

2002]. Several such methods are based on finite-difference discretiza-

tions on regular Cartesian grids, often with a staggered placement

of state variables. Level-set methods [Osher and Fedkiw 2003] have

been used widely to solve interface problems on a Cartersian grid, in

conjunction with the numerical schemes to treat the boundary such

as the Ghost Fluid Method [Fedkiw et al. 1999] and variational inter-

polation [Batty et al. 2007]. Explicit boundary discretizations, such

as embedded surface meshes, show their unique merits in modeling

the sub-cell geometry and enforcing precise boundary conditions

[Azevedo et al. 2016; Schroeder et al. 2012]. These embedded dis-

cretizations of the variational type, are focused on handling Dirichlet

boundaries [Hellrung et al. 2012; Zhu et al. 2012], which inspired

our discretization for solving steady-state flow problems. These

discretizations can conveniently accommodate adaptive resolution

[Ando et al. 2013] and flows in containers with deforming geometry

[Feldman et al. 2005]. Accommodation of changing geometry of the

fluid container is also addressed in grid-based techniques that draw

inspiration from Arbitrary Lagrangian-Eulerian (ALE) techniques

[Ibayashi et al. 2018]. Notably most such works that target evolving

fluid domains are focused towards dynamic simulation rather than

stationary flows. Steady-state flows, and especially Stokes fluids,

have received occasional attention within the graphics literature,

in applications related to fluid control [Bhattacharya et al. 2012],

simulation of highly viscous media such as paint [Baxter et al. 2004],

or as a complement to an unsteady-flow solver for viscous liquids

[Larionov et al. 2017].

In terms of the fluid model, besides prior efforts on Stokes flow,

our work is also related to methods on simulating nonlinear com-

pressible flows [Kwatra et al. 2009] and viscoplastic materials [Stom-

akhin et al. 2014] but is different from them: instead of solving the

Navier-Stokes equations with explicit pressure terms, we exploit

the analogy between Stokes flows and linear elasticity to simulate

differentiable, quasi-incompressible Stokes flow without the need

for solving the pressure term explicitly. The idea of drawing the

analogy between fluids and elastic solids for fluid simulation can

also be found in Ferstl et al. [2014], which simulates fluids on an

adaptive octree grid using a hexahedral finite element discretization.

Although both Ferstl et al. [2014] and our method leverages finite

element discretization and elastic solvers for fluid simulation, their

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:3

approach focuses on forward simulation only. Meanwhile, we de-

velop differentiable flow simulation with comprehensive discussions

on gradient derivation.

Fluid control and visualization. Our pipeline for the optimization

of fluidic devices has some degree of thematic overlap with fluid

control [McNamara et al. 2004; Pan et al. 2013; Raveendran et al.

2012], which has been used broadly in animation applications. In

particular, our method shares similarities with Eckert et al. [2019]

which optimizes external forces in a fluid system in order to match

its behavior to real-world thick smoke. Our focus differs from these

prior fluid control papers in that we consider the effect of the geom-

etry of the fluid container as the sole factor influencing the resulting

flow.We emphasize steady-state flows and optionally consider multi-

objective optimizations under different scenarios of user-imposed

boundary conditions. Another thematically related thread of prior

research targets interactive visualization of fluids under interac-

tive user manipulation of solid boundaries surrounding the flow

[Umetani and Bickel 2018], although our pipeline is more explicitly

geared towards active optimization of such designs in steady-state

flow scenarios. Data-driven synthesis techniques based on neural

networks [Chu and Thürey 2017; Kim et al. 2019] can also produce

parametric generative models of fluid flows. Compared to these

methods, our first-principles-based approach is not reliant on a

comprehensive training corpus and can discover new designs not

exemplified in training samples. Finally, we share inspiration from

the growing body of recent research on differentiable simulators

[Holl et al. 2020; Hu et al. 2019; Li et al. 2019; Liang et al. 2019;

Schenck and Fox 2018] which are emerging as a powerful tool for

automated design and control applications.

Fluid system optimization. In practice, the most prevalent tech-

nique for fluid system optimization is topology optimization [Deaton

and Grandhi 2014; Rozvany 2009; Sigmund and Maute 2013]. Be-

ginning with the pioneering work of Borrvall and Petersson [2003],

vast literature has been devoted to the optimization of fluid sys-

tems, including Stokes flow [Aage et al. 2008; Challis and Guest

2009; Gersborg-Hansen et al. 2005; Guest and Prévost 2006], steady-

state flow [Zhou and Li 2008], weakly compressible flow [Evgrafov

2006], fluid-structure interaction (FSI) [Andreasen and Sigmund

2013; Casas and Pavanello 2017; Yoon 2010], aerodynamics [Maute

and Allen 2004], and animation [McNamara et al. 2004], to name

a few. Some recent work has started to study dynamic and statis-

tical features such as turbulence [Dilgen et al. 2018a,b; Papoutsis-

Kiachagias and Giannakoglou 2016]. The development of topol-

ogy optimization algorithms to explore the dynamic characteristics

driven by various fluids remains unexplored due to the complexities

regarding both the simulation and optimization.

Unlike these prior efforts, our method chooses parametric shapes

as the design space as opposed to voxel grids in topology optimiza-

tion. While a parametric representation limits the space of possible

solutions (e.g., topological structures cannot appear/disappear), this
representation also has significant advantages. First, handling of

the fluid-solid boundary is accurate and efficient. Second, engineers

can also provide input on the types of solutions they have in mind.

Finally, the computed representation is editable and directly com-

patible with current CAD systems since conversion from voxels to

parametric surfaces is not necessary.

3 SYSTEM OVERVIEW
Our system is visualized in Fig. 2. As input, a user supplies a param-

eterized level-set geometry, for example, spline curves or NURBS

surfaces (Fig. 2.1). These manifolds separate the solid regions from

regions with fluid flow. The user further specifies inlet flow veloci-

ties at some point on the fluid portion of the grid (fixed boundary

conditions) and an objective to optimize. This objective could be,

e.g., target flow velocities at certain designated outlet locations.

During optimization, the following quasi-Newton optimization

loop is applied: the current design, as defined by the current pa-

rameter instantiation, is simulated on a regular grid with explicit

handling of different types of boundary conditions (Fig. 2.2). If the

performance of the simulated device does not match the desired

objectives of the user (Fig. 2.3), the objective function is differenti-

ated through the simulation with respect to the design parameters

to produce a gradient (Fig. 2.4), which is then used to improve the

design (back to Fig. 2.1). Otherwise, the optimization is terminated

with a successful design (Fig. 2.5).

The remainder of this paper is organized as follows: first, we de-

scribe the underlying physical assumptions governing our models,

such as constitutive material models and boundary conditions, along

with the continuous Partial Differential Equation (PDE) formulation

of the physics (Sec. 4). Next, we describe how we discretize these

continuous equations into a finite element form that can be simu-

lated (Sec. 5). We then describe the forward simulation (Sec. 6) and

gradient computation and optimization framework (Sec. 7), before

finally presenting results and discussions (Sec. 8).

4 GOVERNING PARTIAL DIFFERENTIAL EQUATIONS
Since our work targets shape optimization of structures that modu-

late the flow properties of liquid media, we first present the math-

ematical model we have adopted for the governing equations of

such fluid flows. Given their ubiquity in computational physics and

computer graphics, established models of fluid flow such as the

incompressible Euler equations for inviscid flows or, more gener-

ally, the Navier-Stokes equations for fluids with nontrivial viscosity

[Bridson 2015] would be natural choices. However, given the diffi-

culty of the continuous optimization in the inverse design problem

at hand, we consciously restrict our material model to a narrower

set of smoother, more well-behaved fluid behaviors. First, we specif-

ically seek to model steady-state flows in order to avoid transient

effects and avoid time dependencies in our optimization task. Sec-

ond, in order to avoid local minima associated with non-unique

solutions as well as boost the speed and conditioning of the opti-

mization scheme, we employ the linearized form of the steady-state

Navier-Stokes equations, also known as Stokes flow [Lautrup 2004].

Incompressible Stokes equations. We initially review the PDE form

of the Stokes system and describe the boundary value problem that

would be typically formulated for flow scenarios as in our target

application. Let Ω ⊂ R𝑑
(𝑑 = 2 or 3) be a domain bounded by a

smooth boundary Γ. In the standard Eulerian perspective, the Stokes

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

197:4 • Du et al.

Initial design parameters
θ = (θ0, θ1, …)

Levet-set Φ

Evaluate gradient and update θ

Fluid simulation

vi vitarget
Yes

1 2

4

Optimized shape

5

∇θi

θi

No

if Σ||vi-vitarget||2 < ɛ
3

̃

̃

Fig. 2. An overview of our system: 1: the design parameter 𝜽 (either explicitly given or randomly initialized) determines the fluid-solid boundaries
in the design problem. 2: for any given 𝜽 , we simulate the Stokes flow in the fluidic domain and enforce different types of boundary conditions
explicitly. 3: we then evaluate the loss function on the resulting velocity field and test it against the termination condition. 4: if the result is not
optimal, we differentiate the loss with respect to 𝜽 and its gradient is applied in a gradient-based local optimization method to update the design
parameter. 5: the algorithm terminates with an optimized 𝜽 and the corresponding design.

equations yield a velocity field 𝒗 : Ω → R𝑑
and a pressure field

𝑝 : Ω → R as solutions to the PDE system

−𝜂𝚫𝒗 (𝒙) + ∇𝑝 (𝒙) = 𝒇 (𝒙) 𝒙 ∈ Ω (1)

∇ · 𝒗 (𝒙) = 0 𝒙 ∈ Ω (2)

where 𝜂 is the dynamic viscosity and 𝒇 (𝒙) an externally applied

force field (e.g. gravity) if applicable. We note that Eqn. (1) is derived

from the momentum equation ∇ · 𝑻 (𝒙) +𝒇 (𝒙) = 0 after substituting

the linear constitutive law for the stress tensor 𝑻

𝑫 =
1

2

[∇𝒗 + (∇𝒗)𝑇] (3)

𝑻 = 2𝜂𝑫 − 𝑝𝑰 = 𝜂 [∇𝒗 + (∇𝒗)𝑇] − 𝑝𝑰 (4)

and using the incompressibility Eqn. (2) to simplify the result; here,

∇𝒗 is the spatial gradient of 𝒗, 𝑫 the strain rate tensor, and 𝑰 the
𝑑 × 𝑑 identity matrix.

Boundary conditions along the boundary Γ may be chosen from

several types, according to the intended scenario and application.

The most straightforward would be Dirichlet boundary conditions

𝒗 (𝒙) = 𝜶 (𝒙) 𝒙 ∈ Γ𝐷 (5)

on any part of the boundary, denoted as Γ𝐷 where we want to have

a prescribed velocity profile 𝜶 (𝒙), as in the inlet to the apparatus

depicted in Fig. 3 (a). In those cases where we seek to model a highly

viscous contact layer, a no-slip zero-Dirichlet boundary condition

𝒗 (𝒙) = 0 would also be enforced along the surface of the container

wall; this is used in only a minority of our examples, but is certainly

an option within our framework.

The remaining types of boundary conditions encountered in our

framework involve the traction vector 𝝉 (𝒙) = 𝑻 (𝒙) · 𝒏(𝒙), defined
on a boundary location 𝒙 ∈ Γ with outward-pointing normal vector

𝑛(𝒙). A traction condition

𝝉 (𝒙) = 𝜷 (𝒙) 𝒙 ∈ Γ𝑇 (6)

would typically be used in outlets of our flow device where, instead

of prescribing a flow profile, we would provide an externally ap-

plied force along the associated boundary (i.e. a cross-section of the

fluid container) that intends to either impede or boost the flow. An

example would be a permeable membrane affixed to an outlet that

seeks to impede the flow by applying a resistive force. The specific

type of boundary condition used in all our examples is 𝝉 (𝒙) = 0
(equivalently, 𝜷 (𝒙) = 0) which we would refer to as an open bound-
ary condition and corresponds to the flow being allowed to transit

through the domain boundary freely, without either being impeded

or boosted by any external influence (see Fig. 3 (a)).

The final type of boundary condition we optionally employ in

our framework is a no-separation (and, in essence also no-friction)
boundary condition along the walls of the enclosing container. This

mixed boundary condition is captured in the following equations

𝒗 (𝒙) · 𝒏(𝒙) = 0 𝒙 ∈ Γ𝑆 (7)

𝝉𝑡 (𝒙) = 0 𝒙 ∈ Γ𝑆 (8)

where the first component is conveyed by the scalar (1D) condi-

tion in Eqn. (7) and dictates that the flow should be parallel to the

container wall (with 𝒏(𝒙) being the normal vector at a boundary

point 𝒙 ∈ Γ𝑆); this suggests that the flow will neither separate from

the container, nor will it penetrate into it. Eqn. (8) dictates that

the tangential component 𝝉𝑡 of the traction vector should be equal

to zero; this constraint has (𝑑 − 1) dimensions as it is projected

on the tangential plane at each boundary location. Intuitively, this

condition suggests that the fluid flow is not subject to any frictional

forces that would impede its tangential motion; when combined

with the no-separation condition this yields the same number of 𝑑

equations per boundary point as in other types of boundary condi-

tions. We employ this type of boundary condition broadly (albeit,

not exclusively) in our examples, as it enables the emergence of the

type of laminar steady-state flows that we would intuitively expect

with a friction-free contact layer.

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:5

Relation to linear elasticity. Well-known parallels exist between

the Stokes problem and the PDEs of linear elasticity, which are

broadly used in shape and topology optimization applications. We

should emphasize that these analogies – stemming from the fact

that both equations emerge from directly congruous conservation

laws – are despite the fact that the underlying state variable has a

different physical meaning for fluids versus elastic solids. In fluids,

the PDE is defined over a velocity field, and in elastic media, over a

displacement field.
Although we will demonstrate this analogy in its most stark

form in the limit of incompressible linear elastic materials, we will

start our review of this relation from the standard (i.e. compress-

ible) linear elasticity PDE. For an elastic medium whose shape

change is encoded via a deformation map 𝒙 (𝑿) : Ω → R𝑑
(where

𝑿 are material/undeformed coordinates and 𝒙 the corresponding

spatial/deformed locations), we define the displacement field as

𝒖 (𝑿) = 𝒙 (𝑿) − 𝑿 , and subsequently define the small-strain tensor

𝝐 and Cauchy stress 𝝈 from a linear stress-strain relationship

𝝐 =
1

2

[∇𝒖 + (∇𝒖)𝑇] (9)

𝝈 = 2𝜇𝝐 + 𝜆 tr(𝝐)𝑰 (10)

where 𝜇, 𝜆 here are the Lamé coefficients of the elastic material.

Substituting the stress tensor 𝝈 (𝒙) into the momentum equation

∇ ·𝝈 (𝒙) +𝒇 (𝒙) = 0 (where 𝒇 (𝒙) are the external forces, if any) now
yields the PDE of linear elasticity [Sifakis and Barbic 2012]:

−𝜇𝚫𝒖 (𝒙) − (𝜇 + 𝜆)∇[∇ · 𝒖 (𝒙)] = 𝒇 (𝒙) 𝒙 ∈ Ω. (11)

The relation to the Stokes equations will start becoming more appar-

ent if we consider an almost incompressible material for which the

value of 𝜆 is significantly larger than that of 𝜇; although the solution

of the PDE evolves smoothly and continuously as the parameter 𝜆

asymptotically reaches infinity, the exact form of the PDE in Eqn.

(11) would not be the ideal way to express it, due to the unbounded

coefficients involved. Instead, we can derive a better behaved, equiv-

alent system in the spirit of mixed formulations [Brezzi and Fortin

2012; Zhu et al. 2010], by introducing a new, auxiliary state variable

𝑟 (𝒙) defined as

𝑟 (𝒙) = −(𝜇 + 𝜆)∇ · 𝒖 (𝒙). (12)

By substituting this expression into Eqn. (11) and rearranging terms

in Eqn. (12), we arrive at the following equivalent PDE system for

compressible linear elasticity

−𝜇𝚫𝒖 (𝒙) + ∇𝑟 (𝒙) = 𝒇 (𝒙) 𝒙 ∈ Ω (13)

∇ · 𝒖 (𝒙) + 1

𝜇 + 𝜆
𝑟 (𝒙) = 0 𝒙 ∈ Ω. (14)

Once we have arrived at this form, the analogy between the

Stokes equations and the above equations of linear elasticity start

becoming more apparent. We highlight the following observations:

• It should be clarified that any similarities between the two

governing laws are restricted to the form of their PDEs, while

the underlying state variables are semantically distinct. Specif-

ically, 𝜂, 𝒗, and 𝑝 in Eqns. (1, 2) play the same role as 𝜇, 𝒖,
and 𝑟 in Eqns. (13, 14), although their physical meanings

are quite different, e.g., in Stokes flow, 𝒗 is a velocity field,

where in elasticity 𝒖 refers to a field of elastic displacements.

These semantic differences do not prevent us, however, from

exploiting the similarities at the PDE level.

• It is known [Brezzi and Fortin 2012; Olshanskii et al. 2009]

that the reformulated system in Eqn. (13) and (14) is smooth

(and also, elliptic) and remains well behaved in the asymptotic

limit 𝜆 → ∞ when the coefficient of 𝑟 (𝒙) in Eqn. (14) will

merely vanish. The solution to the PDE system, itself, will

smoothly and uniformly converge to a limit behavior as we

asymptotically approach strict incompressibility.

• If we specifically consider the asymptotic case of strict incom-

pressibility (𝜆 → ∞), then Eqn. (13) and (14) reduce exactly
to the Stokes equations as stated in the prior paragraph.

The analogy (and, actually, equivalence) of the linear elasticity

and Stokes PDEs would not be complete if we did not also address

the form that the respective boundary conditions that the two sets of
equations might employ. Dirichlet conditions, of course, are equally

applicable to both formulations. Those boundary conditions, how-

ever, that involve the stress tensor 𝑻 in Stokes flow and 𝝈 in linear

elasticity require special attention. Taking the trace of Eqn. (9) yields

tr(𝝐) = ∇ · 𝒖; using this equality and the definition of 𝑟 in Eqn. (12)

allows us to rewrite the stress tensor from Eqn. (10) as

𝝈 = 𝜇 [∇𝒖 + (∇𝒖)𝑇] − 𝜆

𝜇 + 𝜆
𝑟 𝑰

= 𝜇 [∇𝒖 + (∇𝒖)𝑇] − 2𝜈𝑟 𝑰 (15)

where 𝜈 = 𝜆
2(𝜇+𝜆) is the Poisson’s ratio that approaches the value

0.5 in the incompressible limit. Once again, we observe that in the

incompressible limit, the stress tensors in both linear elasticity and

Stokes converge to the same limit form; as a consequence, so would

any traction boundary conditions that would derive from this stress

tensor. This demonstrates the asymptotic equivalence of Stokes and

linear elasticity at the near-incompressible limit.

Our model: quasi-incompressible Stokes. The aforementioned rela-

tion of Stokes and linear elasticity has previously been leveraged

primarily to develop discretization and solution schemes for incom-

pressible or near-incompressible elasticity that draw inspiration

from established methods for Stokes [Gaspar et al. 2008; Zhu et al.

2012]. However, directly pursuing a discretization of the Stokes

problem has its own subtleties; due to the incompressibility con-

straint, the associated discretizations – and especially variational

formulations – take the form of saddle point problems, restricting

somewhat the options for associated numerical solvers. Boundary

treatment at sub-element precision is relatively nontrivial, especially

if certain numerical properties of the discretization (e.g. symmetry)

are to be preserved [Zhu et al. 2010].

We have thus decided, in this initial venture into shape optimiza-

tion involving fluid flows, to move in the opposite direction, and

use the equations of linear elasticity in the near-incompressible (e.g.
𝜈 ≈ 0.49) but not strictly incompressible regime. We choose to use

the common form of the linear elastic model in Eqn. (11) as op-

posed to the pressure-augmented system (Eqn. (13) and (14)), and

also use the corresponding expression for the stress tensor, as in

Eqn. (10) in the formulation of traction or no-separation/no-friction

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

197:6 • Du et al.

Ω0

Ω1

Ω2

Ω3

Ψ(v0)

Φ(θ)00

Φ(θ)01

Φ(θ)10

Φ(θ)11

a(θ)x+b(θ)y+c(θ)=0

Area(θ)

F

S

M

v00

v01

v10

v11

v(x)
Ψ(v1)

Ψ(v2)

Ψ(v3)

ΓS

ΓD

ΓT

ˆ

ˆ ˆ

ˆ ˆ

(a) (b) (c) (d) (e)

Fig. 3. (a) the entire 2D space is discretized into fluid, solid, and mixed cells, with three types of boundaries as discussed in Sec. 4. (b) fluid velocities
𝒗𝑖 are stored on grid nodes. (c) the fluid energy density is evaluated on different quadrature points and integrated over the entire cell by multiplying
by the fluid occupied area at each subcell. (d) the Dirichlet boundary condition is enforced by integrating the values over the linearized interface,
with the quadrature points obtained from the projection of quadrature points in (c) onto the interface. (e) all geometric information is defined by
design parameters 𝜽 and linearized within each subcell.

boundary conditions. The new governing equation for our quasi-

incompressible Stokes flow model can be obtained by replacing 𝜇

and 𝒖 in Eqn. (11) with the dynamic viscosity 𝜂 and the velocity

field 𝒗 from Stokes flow:

−𝜂𝚫𝒗 (𝒙) − 𝜂

1 − 2𝜈
∇[∇ · 𝒗 (𝒙)] = 𝒇 (𝒙) 𝒙 ∈ Ω. (16)

Similarly, the traction tensor 𝝉 = 𝑻 · 𝒏 used by the boundary condi-

tions is implemented with the following stress tensor:

𝑻 = 𝜂 [∇𝒗 + (∇𝒗)𝑇] + 𝜂 (2𝜈

1 − 2𝜈
∇ · 𝒗)𝑰 . (17)

In both equations, the Poisson’s ratio𝜈 controls the incompressibility

of our Stokes model. When 𝜈 → 0.5, these two equations converge

back to Eqns. (1, 2, 4). Note that 𝜆 in the linear elasticity equations

has been replaced with
2𝜂𝜈
1−2𝜈 from the relation 𝜈 = 𝜆

2(𝜂+𝜆) .
While we choose to model quasi-incompressible Stokes with an

analogy between linear elasticity and Stokes, it is worth pointing

out that using the saddle point formulation for discretizing the truly

incompressible Stokes flow is still a viable technique. In fact, it

would be recommended when paired with an iterative sparse linear

solver like Preconditioned Conjugate Gradient (PCG) or multigrid

methods. We stress that we opt to use the quasi-incompressible

formulation due to our reliance on direct sparse solvers, whose

advantages over iterative solvers will become evident in gradient

computation (Sec. 7). Furthermore, there is a much higher degree

of comfort and experience in standard topology optimization with

“stock” linear elasticity, while Stokes systems are not as widespread.

5 NUMERICAL DISCRETIZATION
We discretize our governing equations on a Cartesian background

grid that embeds the geometry of the fluid cavity as in Fig. 3 (a)

(as opposed to using a mesh that conforms to the boundary of the

fluid container). We employ a collocated discretization where all

components of the velocity field are stored at the same locations, at

the nodes of the Cartesian grid (as opposed to staggered, marker-

and-cell (MAC) grid discretizations), and since we use Eqn. (16) for

our quasi-incompressible Stokes fluid, there is no need to involve

any “pressure” state variables in our formulation. Using a varia-

tional approach, we can express boundary conditions at a sub-grid

resolution while only storing variables at regular grid-node loca-

tions. Again, we stress that due to the strong resemblance between

Eqn. (16) and its linear elasticity counterpart Eqn. (11), the numerical

discretization paradigm to be discussed in this section is essentially

the commonly used discretization scheme in linear elasticity in dis-

guise, allowing practitioners to reuse existing implementations in

standard topology optimization with very little extra effort.

Variational form and embedded traction boundaries. We initially

focus on the quasi-incompressible Stokes problem in a domain Ω ∈
R𝑑

, under traction boundary conditions, stated as follows

−∇ · 𝑻 = −𝜂𝚫𝒗 (𝒙) − 𝜂

1 − 2𝜈
∇[∇ · 𝒗 (𝒙)] = 𝒇 (𝒙) 𝒙 ∈ Ω (18)

𝑻 · 𝒏 = 𝜷 (𝒙) 𝒙 ∈ 𝜕Ω (19)

where the stress tensor 𝑻 is defined as in Eqn. (17). It is known [Daux

et al. 2000; Hughes 2012] that the associated variational formulation

of this problem computes the solution via minimization of an energy

functional 𝐸 [𝒗] over all functions 𝒗 in an appropriate solution space.

For our purposes, we define the solution space to be all functions

defined by bilinear (2D) or trilinear (3D) interpolation over the cells

of the background Cartesian grid, and the associated energy to be

minimized is [Daux et al. 2000; Zhu et al. 2012]

𝐸 [𝒗] =
∫
Ω
Ψ[𝒗 (𝒙)]𝑑𝒙 −

∫
Ω
(𝒗 · 𝒇)𝑑𝒙 −

∫
𝜕Ω

(𝒗 · 𝜷)𝑑𝑆 (20)

where the energy density Ψ[𝒗] is defined as

Ψ[𝒗] = 𝜂∥𝑫 [𝒗] ∥2𝐹 + 𝜂𝜈

1 − 2𝜈
[tr(𝑫 [𝒗])]2

with the strain rate 𝑫 computed from 𝒗 as in Eqn. (3). We note

that in most of our examples we do not use any external forces (e.g.

gravity), hence 𝒇 = 0, and only use zero-valued (or open-boundary)

traction boundary conditions, thus 𝜷 = 0. As a consequence, the

last two integrals in Eqn. (20) are zero for our examples. Should it

be necessary, however, to incorporate non-zero forces or traction

conditions in a different application, these terms can trivially be

included in our discretization, and we later discuss how both volume

and boundary integrals can be computed via quadrature within our

solution space.

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:7

Sub-cell energy quadrature. Using bilinear/trilinear interpolation

as shown in Fig. 3 (b), our solution space contains all functions of

the form

𝒗 (𝒙 ;V) =
∑
𝑖

𝒗𝑖N𝑖 (𝒙) (21)

where N𝑖 (𝒙) is the shape function associated with grid node 𝑖 , and

V = {𝒗𝑖 } collectively represents all nodal velocities in our grid.

Using this interpolation, we can also express all derivative quantities

as functions of the nodal velocities, by proper manipulation of the

shape functions. For example, the entries of the strain rate tensor

𝑫̂ (𝒙 ;V) = 𝑫 [𝒗 (𝒙 ;V)] are evaluated as

𝑫̂𝑝𝑞 =
1

2

∑
𝑖

[
𝒗
(𝑝)
𝑖

N𝑖,𝑞 (𝒙) + 𝒗
(𝑞)
𝑖

N𝑖,𝑝 (𝒙)
]

(22)

where superscripts in parentheses for 𝒗 indicate coordinate com-

ponents, and subscripts in shape functions after commas indicate

partial derivatives. We can continue this substitution to express the

energy density and ultimately the integrated energy in Eqns. (20) as

a function of the nodal velocity values. Since 𝑫̂ is a linear function

of nodal velocities, and the energy density Ψ has a quadratic depen-

dence on 𝑫 , the overall energy 𝐸 [V] = 𝐸 [𝒗] will ultimately reduce

to a quadratic convex function over the nodal velocities, with the

coefficients of this polynomial involving integrals of products of

derivatives of the shape functions. All of this is, of course, merely a

restatement of the standard finite element discretization approach

in a Cartesian lattice [Hughes 2012; Patterson et al. 2012].

The integral in Eqn. (20) can be computed on a per-cell basis;

using our assumption that 𝒇 = 𝜷 = 0, we can write

𝐸 [V] =
∫
Ω
Ψ[𝒗 (𝒙 ;V)]𝑑𝒙 =

∑
𝑘

∫
Ω∩C𝑘

Ψ[𝒗 (𝒙 ;V)]𝑑𝒙︸ ︷︷ ︸
𝐸𝑘 [V]

(23)

where the summation is taken over all cells {C𝑘 } in our background

grid. The per-cell energies 𝐸𝑘 fall in one of two categories. For

fully interior cells (for which C𝑘 ⊂ Ω) the integral can be computed

exactly either via analytic integration (the integrands are low-degree

polynomials), or with a 4-point (8-point in 3D) Gauss quadrature;

this yields the same stencil that is used in several similar methods

[Aage et al. 2017; Bendsoe and Sigmund 2013; Liu et al. 2018]. For

boundary cells (those that have C𝑘 ∩ 𝜕Ω ≠ ∅) we must specify a

quadrature rule for the partial-cell domain of integration C𝑘 ∩ Ω.
We propose a quadrature rule for such boundary cells motivated

by the following design objectives: (a) We seek a rule that is as

simple as possible, so as to be easily adaptable to scenarios where

the boundary location is evolving, as in the context of shape opti-

mization, (b) The rule must give rise to continuous solutions as the

boundary evolves, to ensure differentiability of such solution with

respect to design parameters, and (c) The rule should have at least a

rudimentary degree of accuracy (e.g. exactly integrate constant inte-
grands) and be free of common defects. In light of these design traits,

we propose a quadrature formula that uses four weighted quadra-

ture points (as shown in Fig. 3 (c) in 2D), placed at the centers of four

equal quadrants C (0)
𝑘

, . . . , C (3)
𝑘

produced by bisecting the boundary

cell along each axis (see Fig. 3 (c)). If we denote by 𝒙0, . . . , 𝒙3 the cen-

ters of these quadrants and by Ω0 := C (0)
𝑘

∩ Ω, . . . ,Ω3 := C (3)
𝑘

∩ Ω

the fractions of these quadrants that are interior to the fluid domain

Ω, the quadrature rule becomes

∫
Ω∩C𝑘

Ψ[𝒗 (𝒙 ;V)]𝑑𝒙 ≈
3∑
𝑗=0

Area(Ω 𝑗)Ψ[𝒗 (𝒙 𝑗 ;V)] . (24)

A similar quadrature rule would naturally be defined in 3D, using

eight quadrature points at the center of the octants that a cell is

split by bisecting each axis, weighted by the corresponding volume

fraction of each that falls inside Ω. It is clear that the quadrature
rule integrates constant functions exactly (due to the area factors),

and that it would provide for continuously varying solutions as the

boundary evolves (as the minimizers of a convex quadratic with

continuously varying coefficients). The use of multiple quadrature

points (as opposed to a single one, at the centroid of the cell C𝑘)
is mandated in order to avoid hourglassing instabilities in the dis-

cretization [McAdams et al. 2011]. However, keeping this quadrature

rule simple by only having the area factors dependent on the ge-

ometry of Ω greatly simplifies the task of differentiating our flow

solution with respect to the design parameters, as we see in Sec. 7.

We have found this formulation to be effective and sufficient in our

examples, and as we see next it can be used in conjunction with the

other boundary condition types we need in our application.

Dirichlet boundary conditions. The formulation of the preceding

paragraph is sufficient to accommodate pure traction boundary con-

ditions, as the open boundary conditions at the outlet of the fluidic

device in Fig. 3 (a) in blue. In addition, we can easily accommodate

Dirichlet boundary conditions imposed precisely at grid nodes, by

simply setting them to a constant value while minimizing 𝐸 [𝒗]. A
more challenging, but essential scenario to accommodate would be

the enforcement of Dirichlet conditions on an embedded boundary
rather than one that is aligned with the grid faces. Such an example

would correspond to the lateral edges of the device in Fig. 3 (a)

in brown, should a no-slip Dirichlet condition (𝒗 = 0) have been
imposed.

Enforcement of such embedded Dirichlet conditions is not quite

straightforward with variational formulations, as opposed to trac-

tion conditions (analogous to Neumann conditions in the Poisson’s

equation) which are naturally incorporated into the energy 𝐸 [𝒗].
Possible options such as a “soft” constraint enforcement [Lee et al.

2009; Sifakis et al. 2007] have to contend with ad-hoc constraint

stiffnesses, while imposing Dirichlet conditions at zero crossings

between the interface and grid edges is known to be questionable in

its convergence quality or even the existence of a compliant solution

[Bedrossian et al. 2010; Moës et al. 1999]. Instead, we employ a for-

mulation for the enforcement of embedded Dirichlet conditions that

leverages a weak formulation of the constraint using an appropriate

approximation space [Hellrung et al. 2012; Zhu et al. 2012], that has

been successfully used with elliptic PDEs in similar contexts.

Let 𝒗 (𝒙) = 𝜶 (𝒙) be the Dirichlet condition we want enforced in

a section of the boundary Γ𝐷 ⊂ 𝜕Ω that is intersecting grid cells,

rather than being aligned with edge boundaries. Following previous

work [Bedrossian et al. 2010; Zhu et al. 2012], for each such cell,

we enforce the Dirichlet condition in an averaged fashion, via the

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

197:8 • Du et al.

integral constraint∫
C𝑘∩Γ𝐷

𝒗 (𝒙 ;V)𝑑𝒙 =

∫
C𝑘∩Γ𝐷

𝜶 (𝒙)𝑑𝒙

which, given the expansion of 𝒗 using the shape functions, becomes∑
𝑖

𝒗𝑖

∫
C𝑘∩Γ𝐷

N𝑖 (𝒙)𝑑𝒙 =

∫
C𝑘∩Γ𝐷

𝜶 (𝒙)𝑑𝒙 . (25)

Eqn. (25) is effectively a (𝑑-dimensional) linear equality constraint

associated with each boundary cell. The integral of the shape func-

tion on the left-hand side is computed analytically via a hyperplane
approximation to the cell boundary C𝑘 ∩ Γ𝐷 . We construct a best-fit

line in 2D (plane in 3D) to this boundary section based on the signed

distances from grid nodes to the boundary. We use a quadrature rule

to approximate the integral of both the shape function and 𝜶 over

C𝑘 ∩ Γ𝐷 unless the integral is trivial to compute analytically, e.g.,

𝜶 (𝒙) is constant. In our application, only a no-slip, zero-Dirichlet
boundary condition 𝜶 (𝒙) = 0 is employed, hence the integral on

the right-hand side is trivially zero. We discuss this quadrature rule

in greater detail in Sec. 6 and our supplemental material.

Aggregating all such constraints from all cells that intersect the

Dirichlet boundary yields a linear system of constraints 𝑪𝒗 = 𝒅
(for simplicity of notation we use here the symbol 𝒗 for all nodal
velocities, in replacement ofV). As mentioned before, for no-slip

boundaries we would have 𝒅 = 0.

No-separation, zero-friction boundaries. Although no-slip condi-

tions can be accommodated as in the previous paragraph, enforcing

no-separation boundary conditions combined with a zero tangen-

tial component of the traction vector is the norm in our examples,

as encoded in Eqns. (7, 8). Similar to the previous paragraph, the

projected Dirichlet condition 𝒗 · 𝒏 = 0 is enforced via an integral

constraint∫
C𝑘∩Γ𝐷

𝒗 (𝒙 ;V) · 𝒏𝑑𝒙 =
∑
𝑖

(𝒗𝑖 · 𝒏)
∫
C𝑘∩Γ𝐷

N𝑖 (𝒙)𝑑𝒙 = 0 (26)

which is now just a single scalar constraint (per cell) as shown in

Fig. 3 (d), while the zero tangential component of the traction is

implicitly enforced from the energy formulation in Eqn. (20). Again,

a single constraint system of the form 𝑪𝒗 = 𝒅 can aggregate all

boundary conditions other than traction boundaries (which are in-

corporated in the energy), including (a) node-aligned Dirichlet con-

straints, (b) embedded Dirichlet constraints, and (c) no-separation

conditions.

6 FORWARD SIMULATION
Given the discretization described in Sec. 5, we now provide a means

of computing the fluid velocity field 𝒗 given the boundary shape

parameterized by a vector of parameters 𝜽 . The specific definition
of 𝜽 depends on the type of parametric surfaces. Additionally, if

multiple parametric surfaces exist in the problem domain, their

parameters are aggregated into a single vector 𝜽 . As described in Sec.
5, 𝒗 is the minimizer of the variational form of the energy in Eqn. (20)

with boundary conditions applied. Due to the analogy between

Stokes flow and linear elasticity, the post-discretization variational

form of the energy, known to be quadratic in 𝒗, can be defined

as
1

2
𝒗𝑇𝑲𝒗 where 𝑲 has an equivalent role of the stiffness matrix

in linear elasticity. Further, the discretized boundary conditions,

already introduced as 𝑪𝒗 = 𝒅, are linear in 𝒗. Combined, these

form a convex quadratic programming (QP) problem, the solution

to which describes the fluid velocity

𝒗̃ (𝜽) = argmin

𝒗

1

2

𝒗𝑇𝑲 (𝜽)𝒗 (27)

s.t. 𝑪 (𝜽)𝒗 = 𝒅 (𝜽) . (28)

Here, the convexity comes from the positive semi-definiteness of

the stiffness matrix 𝑲 . The notation 𝒗̃ is used to emphasize that this

is the minimizer of the QP problem, dependent on the parameter 𝜽 .
Meanwhile, 𝑲 , 𝑪 , and 𝒅 are written as functions of 𝜽 as their values

are dependent on the location of the solid-fluid interface boundaries.

This should be especially obvious in the case of 𝑲 , as in Eqn. (24)

we can see that boundary cells contribute to this term by an amount

proportional to the area of their region of overlap with Ω. Again,
we point out that the external force 𝒇 and traction condition 𝜷 are

ignored for simplicity. Should it be necessary, both of them could be

easily added back to Eqn. (27) as a linear term on 𝒗 with its linear

weights dependent on 𝜽 .
The remainder of this section is dedicated to describing how 𝑲 , 𝑪 ,

and 𝒅 are computed from 𝜽 , concretely describing how to calculate

the steady-state flow and laying the groundwork for the gradient

computation. Given a set of design parameters 𝜽 , the analytic signed
distance function of the boundary is computed at each cell corner,

building a signed-distance field on the whole grid. We then compute

a hyperplane of best fit (line in 2D; plane in 3D) to approximate

the geometry of the boundary within each individual cell (where

applicable). This hyperplane is used to compute the stiffness matrix

component 𝑲𝑖 𝑗
for the cell with indexing (𝑖, 𝑗). Further, we use it

to integrate the shape function N𝑖 and the boundary condition 𝜶
described in Sec. 5 to form the linear constraints 𝑪𝒗 = 𝒅. With the

full QP formulated, 𝒗̃ is obtained by solving the KKT conditions.

Signed-Distance Functions (SDF) for parametric shapes. Given de-

sign parameters 𝜽 that determine the fluid-solid boundary, we first

compute the signed distance from each cell’s corners to the bound-

ary. With the type of parametric surface known beforehand, evalu-

ating this distance typically involves nothing more than analyzing

the functions describing the level-set of the parametric shape. For

example, if 𝜽 parameterizes a circle with 𝜽 = (𝒄, 𝑟) (the center po-
sition and radius of the circle), then the signed distance function

can be written compactly as 𝜙 (𝒙) = 𝑟 − ∥𝒄 − 𝒙 ∥2 for any 𝒙 . Signed-
distance functions of more sophisticated parametric shapes, e.g.,
Bézier curves, can be found in our supplemental material. Through-

out this paper, we use the convention that 𝜙 (𝒙) > 0 refers to the

solid region and 𝜙 (𝒙) < 0 corresponds to the fluid region.

Boundary in a cell. Once the signed distances from a cell’s corners

to the boundary are given, the next step is to fit a hyperplane (line in

2D and plane in 3D) that approximates the fluid-solid interface in the

cell when necessary. Note that this implicitly assumes the boundary

does not contain delicate structures that are significantly smaller

than the cell size. Depending on the signs at each corner, a cell is

classified into three categories: purely in the interior of the solid

region, purely in the interior of the fluid region, or partially in both

regions. Only this final case requires fitting a hyperplane inside the

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:9

cell, for which we obtain the hyperplane parameters from a linear

least squares regression on the signed distances at its corners. As

techniques for solving linear least squares are mature, we leave the

details in our supplemental material.

At the end of this step, we have determined the type of each

cell, and, for mixed-cells, we have provided an analytic means of

approximating the boundary with a hyperplane. Such hyperplanes

are crucial in assembling the matrices and vectors in Eqns. (27, 28).

Assembling 𝑲 . Computing 𝑲 requires reasoning about two differ-

ent types of cells: fluid cells and mixed cells. In the former case, the

procedure for computing the contribution to 𝑲 is well-established

in the linear elasticity literature [Bendsoe and Sigmund 2013], as the

integrals involved are evaluated over entire cells, either analytically

or via Gauss quadrature rules. In the latter, mixed-cell case, it can

be seen from Eqn. (24) that dependence on 𝜽 only occurs via the

area term. This is because the energy density function is evaluated

at the same quadrature locations regardless of the cell type. The

area function describes the ratio of the cell that is fluid and can be

computed compactly with a single, closed-form expression [Barrow

and Smith 1979] using the hyperplanes computed before:

Proposition 6.1. Consider a 𝑑-dimensional halfspace 𝐻 = {𝒙 |𝒂 ·
𝒙 + 𝑏 ≥ 0} with the assumption that Π𝑖𝑎𝑖 ≠ 0. The volume of its
intersection with a unit hypercube is

| [0, 1]𝑑 ∩ 𝐻 | =
∑

𝒒∈𝐹 0∩𝐻

(−1) |𝒒0 | (𝒂 · 𝒒 + 𝑏)𝑑
𝑑!Π𝑖𝑎𝑖

(29)

where 𝐹 0 = {0, 1}𝑑 is the set of all hypercube corners and |𝒒0 | is the
number of zeros in the entries of 𝒒.

Since this solution is closed-form and analytical, gradients can

be simply and easily computed, which is especially beneficial in

3D, where plane-cube intersections can lead to complex cell fluid

geometries.

Assembling 𝑪 and 𝒅. The remaining step is to compute 𝑪 and 𝒅
as a function of 𝜽 . We do this on a row-wise basis, again focusing on

the (nontrivial) mixed cells. As established in Sec. 5, computing 𝑪
and 𝒅 requires computing the integral of the shape functionN𝑖 over

the cross-sectional area of the boundary and the cell. Computing

this integral analytically is tedious particularly in 3D because the

cross-sectional area can have anywhere from three to six edges,

and the situation would become even worse when computing the

gradients. Thus (and keeping our procedure general), we design the

following quadrature rule to approximate this line or area integral.

Beginning with the quadrature points 𝒙0, 𝒙1, . . . , 𝒙2𝑑−1 which are

in the centers of the cell quadrants (octants in 3D), we first project

𝒙𝑖 onto the fluid-solid boundary approximated by our hyperplanes.

In order to integrate a function over the boundary in the cell, we

use these projections as the quadrature points to approximate the

integral in Eqn. (25):∫
C𝑘∩Γ𝐷

N𝑖 (𝒙)𝑑𝒙 ≈
2
𝑑−1∑
𝑗=0

Proj(𝒙 𝑗 ;𝜽)Area(C (𝑗)
𝑘

∩ 𝜕Ω) (30)

where Proj(·;𝜽) is an operator that projects a point onto the hyper-

plane and its reliance on 𝜽 is due to the hyperplane parameters. The

area function evaluates the cross-sectional area of the fluid-solid

boundary and the quadrants or octants C (𝑗)
𝑘

. We calculate this area

factor by noticing it is the directional derivative of Area(C (𝑗)
𝑘

∩ Ω)
along the hyperplane’s normal:

Area(C (𝑗)
𝑘

∩ 𝜕Ω) =
𝜕Area(C (𝑗)

𝑘
∩ Ω)

𝜕𝑏
∥𝒂∥2 (31)

where 𝒂 and 𝑏 are defined as in Prop. 6.1. Computing this directional

derivative requires nothing more than directly applying the chain

rule to Prop 6.1, and we leave its details in our supplemental material.

Solving the QP problem. Having assembled every piece of Eqns.

(27, 28), we demonstrate how to compute 𝒗̃ as a function of 𝜽 . Since
𝑲 (analogous to an elastic stiffness matrix) is positive semi-definite,

the quadratic term is guaranteed to be convex. Thus, a (global)

minimum for 𝒗̃ always exists. We solve this QP by solving the KKT

system: (
𝑲 (𝜽) 𝑪𝑇 (𝜽)
𝑪 (𝜽) 0

) (
𝒗̃
˜𝝀

)
=

(
0

𝒅 (𝜽)

)
(32)

where
˜𝝀 is a Lagrange multiplier. We choose to solve this KKT

system with a direct factorization method rather than apply an

iterative optimization algorithm, as the pre-factorization of this

system can help accelerate the gradient computation in the next

section. Thus, solving 𝒗̃ reduces to solving a symmetric (possibly

indefinite) linear system depending purely on 𝜽 .

7 OPTIMIZATION
Given design parameters 𝜽 , we have described how to perform for-
ward simulation in order to compute the steady-state velocity field 𝒗̃.
We now detail how to compute the backward gradient computation,

i.e. computing the derivative of the loss function with respect to 𝜽 .
We begin this section by first defining the loss function over which

we wish to optimize and providing a means of evaluating the flow

generated by simulation. Second, we discuss how gradients are com-

puted via a scheme that back-propagates through the simulation.

We conclude with a description of the full optimization algorithm.

Loss functions. While our method imposes no restrictions on the

loss function as long as its gradients are well defined, we focus

on a specific family of loss functions that penalize the discrepancy

between the desired and actual velocity fields 𝒗̃:

𝐿(𝒗̃) = ∥𝐹 (𝒗̃) − 𝐹 (𝒗∗)∥𝑝 (33)

where 𝒗∗ is a target velocity field, 𝐹 is a function that extracts

features we are interested in optimizing from a velocity field, and

∥ · ∥𝑝 is the 𝑝-norm. The choice of 𝐹 is flexible and problem-specific.

For example, 𝐹 can be a selector function that picks velocities at

the outlet of the device only, or 𝐹 can be a curl operator for tasks

focusing on optimizing the rotational speed of a velocity field.

Gradient computation. Given a complete description of the for-

ward simulation scheme, deriving the gradients – at a high level –

requires no more than iterative application of the chain rule. Each

step in forward simulation has a corresponding step in the gradient

computation that is then chained together. Most of these steps re-

quire the straightforward computation of the gradient of the output

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

197:10 • Du et al.

Table 1. A summary of our design problems. The “Time (s)/Function call” column reports the average wall-clock time of one function call to
compute forward simulation and backpropagation. The time was measured on a single Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz. The “Final
loss” column reports the loss of our optimized design. The loss functions in all problems are normalized such that a unit loss refers to the average
performance of randomly sampled designs and zero loss means an oracle design that perfectly matches the desired target, which may not exist in
some problems.

Name Grid resolution # Parameters Level set Boundary condition Time (s)/Function call Final loss

Amplifier 64 × 48 5 Béizer curves No-separation 0.2 1.7e-5

Flow Averager 64 × 64 × 4 8 Béizer curves No-separation 5.3 3.1e-2

Funnel 64 × 64 × 16 10 Béizer curves No-separation 64.8 2.3e-1

Superposition Gate 64 × 64 × 4 5 Béizer curves No-separation 4.9 4.9e-1

Fluidic Twister 64 × 64 × 32 32 NURBS surface No-separation/No-slip 56.1 4.9e-2/9.7e-1

Fluidic Switch 64 × 64 × 32 26 NURBS surface No-slip 171.1 5.8e-1

of the forward simulation (of that step) with respect to the input

(of that step). Therefore, we leave the details of gradient computa-

tion in our supplemental material and only highlight one key step:

the gradients of the solution of the QP problem. Specifically, we

describe the computation of 𝜕𝒗̃/𝜕𝑲 , 𝜕𝒗̃/𝜕𝑪 , and 𝜕𝒗̃/𝜕𝒅. In order to

avoid unwieldy, high-dimensional tensor notation, we describe the

gradient derivation in differential form (sufficient for the purpose

of computing the gradients). Concretely, given perturbations 𝛿𝑲 ,
𝛿𝑪 , and 𝛿𝒅, we explain how much perturbation 𝛿𝒗̃ is expected.

Differentiation the KKT system in Eqn. (32) results in the fol-

lowing linear system with 𝛿𝒗̃ and 𝛿 ˜𝝀 as unknowns (we omit the 𝜽
dependence for clarity):(

𝑲 𝑪𝑇

𝑪 0

) (
𝛿𝒗̃
𝛿 ˜𝝀

)
=

(
0
𝛿𝒅

)
−
(
𝛿𝑲 𝛿𝑪𝑇

𝛿𝑪 0

) (
𝒗̃
˜𝝀

)
(34)

𝛿𝑲 , 𝛿𝑪 , and 𝛿𝒅 are all known; 𝒗̃ and ˜𝝀 have been computed during

the forward simulation process. Since the linear system of equations

here has precisely the same left-hand side as the KKT system solved

in the forward simulation, this matrix can be pre-factorized once

during simulation and reused during gradient computation, allowing

for efficient solving of 𝛿𝒗̃.

Optimization. With a method for computing gradients of the loss

backward through simulation with respect to design parameters in

tow, we are able to apply gradient-based, quasi-Newton methods

for efficient optimization. The performance of this approach primar-

ily depends on two crucial factors: the specific local optimization

method chosen, and the initial guess. Since all of our design prob-

lems have nonlinear continuous losses and bound constraints on

parameters only, we chose L-BFGS, a classic quasi-Newton method,

as our optimizer. The initial guess was selected by picking the best

design among a number of randomly sampled designs in the design

space. Sampling designs serves two purposes in our method: first, it

reduces the risk of getting trapped into local minima. Second, we

can rescale the loss function in each design problem by setting the

average loss from these randomly samples as the unit loss. After this

normalization, the loss functions from different design problems

share the same physical meaning: loss = 0 means an oracle solution

that matches the target perfectly, which is not always possible, and

loss = 1 means the solution has an empirically average performance

among all possible designs.

8 RESULTS AND DISCUSSIONS
In this section, we present six 2D and 3D design problems to evaluate

the performance of our implementation of the differentiable Stokes

flow as well as the optimization pipeline. We start this section by de-

scribing the problem statements for each design problem, followed

by evaluations and discussions on the experimental results. We ask

readers to refer to our supplemental video for a complete demon-

stration of these design problems, the evolution of our optimization

process, and the animation of our final results.

8.1 Design Problems
We summarize the basic information about these design problems

in Table 1 and Fig. 1, 4, and 5. The number of decision variables in

these design problems ranges from 5 to 32, and the cell resolution

of the scenes varies from 64 × 48 cells in 2D to 64 × 64 × 32 cells in

3D. Below we discuss the setup of each design problem in detail:

Amplifier. This motivating example in Fig. 2 is a 2D design prob-

lem that aims to amplify the velocity of inlet flow by a factor of

3. The design variables are the control points of the Bézier curves

representing the upper and lower solid-fluid boundaries. The inlet

flow enters the domain from the left with a velocity of (𝑣, 0), and
the loss function is defined as the difference between (3𝑣, 0) and the
average speed of the outlet flow on the right.

Flow Averager. The goal of this design problem is to engineer a

fluidic load balancer with two inputs (left) and two outputs (right).

Let the two inlet flows enter the domain with velocities (𝑣𝑖1 , 0, 0)
and (𝑣𝑖2 , 0, 0) where 𝑣𝑖1 and 𝑣𝑖2 are arbitrary numbers and let 𝒗𝑜1 and
𝒗𝑜2 be the average flow velocities at the two outlets. The objective

is to encourage both 𝒗𝑜1 and 𝒗𝑜2 to be as close as possible to ((𝑣𝑖1 +
𝑣𝑖2)/2, 0, 0) (Fig. 4 top). In other words, we expect the design to

average the two inputs no matter what values are given for 𝑣𝑖1 and

𝑣𝑖2 . We optimize a loss function that concurrently optimizes for

these two basis inputs (𝑣𝑖1 , 𝑣𝑖2) = (0, 1) and (1, 0). The design space

consists of four Bézier curves in 2D. The 3D solid-fluid boundaries

are formed by extruding these curves vertically.

Funnel. This design problem considers a fluidic domain with two

inputs and one output. The goal is to design the internal boundary

of the fluidic domain such that the direction of the output flow is

45-degrees and input-invariant (Fig. 4 middle). Let (𝑣𝑖1 , 0, 0) and

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:11

(vi , vi) = (1, 0) (vi , vi) = (0, 1)(vi , vi) = (0.5, 0.5)

R
an

do
m

 d
es

ig
n

O
pt

im
iz

ed
 d

es
ig

n

Input 1:
(vi , 0, 0)

Target output 1:
((vi +vi)/2, 0, 0)

Input 2:
(vi , 0, 0) Target output 2:

((vi +vi)/2, 0, 0)

Flow Averager

R
an

do
m

 d
es

ig
n

O
pt

im
iz

ed
 d

es
ig

nInput 1: (vi , 0, 0)

Target output:
(vi , vi , 0)

Input 2: (0, vi , 0)

Superposition Gate

R
an

do
m

 d
es

ig
n

O
pt

im
iz

ed
 d

es
ig

nInput 1: (vi , 0, 0)

Input 2: (0, vi , 0)

Target output:

ϕ
Funnel

0

1.5

Velocity

Angular difference
from target

0°

90°

Shape

ϕ

Angular difference
from target

0°

90°

ϕ

1

2

1

2

1

1

2

2

21 21 21

1 2

1 2

Fig. 4. Three optimization examples: the Flow Averager, the Funnel, and the Superposition Gate. The left figure of each example shows the
specifications of the design problem. The right eight figures of each example show the comparison between a randomly sampled design (top row)
and the optimized design (bottom row) with three different inputs. In the Flow Averager, the vertical color bar inside each inset indicates the
velocity magnitude at the cross section of the two outlets, and solutions with two outlets having more similar colors are better. In the Funnel and
the Superposition Gate, the color indicates the angular error between the local velocity and the target velocity (cooler at the outlet is better).

(0, 𝑣𝑖2 , 0) be the two inlet flow velocities; the design is evaluated by

continuously varying the inputs from (𝑣𝑖1 , 𝑣𝑖2) = (1, 0) and (0, 1)
and observing the change in the direction of the outlet flow. Note

that while the design space consists of 2D Béizer curves only, the

bumpy bottom plate creates enough vertical variations to make it

our first 3D design problem.

Superposition Gate. This design problem shares the similar setting

with the Funnel above except that the goal is to obtain an outlet

flow with a velocity of (𝑣𝑖1 , 𝑣𝑖2 , 0) (Fig. 4 bottom); thus the name

superposition gate. When the inputs (𝑣𝑖1 , 𝑣𝑖2) vary from (1, 0) to
(0, 1), an ideal superposition gate design should generate an outlet

flow that sweeps the first quadrant.

Fluidic Twister. This 3D problem considers designing the internal

surface of a tunnel to generate a twisted flow (Fig. 5). With a straight

inlet flow 𝒗𝑖 = (0, 0,−1) entering the tunnel from the top, an ideal

design needs to generate an outlet velocity field 𝒗𝑜 = (𝑢𝑜 , 𝑣𝑜 ,𝑤𝑜) at
the bottom such that it has a desired vertical curl𝜔 : ∇× (𝑢𝑜 , 𝑣𝑜 , 0) =
(0, 0, 2𝜔). We discretize the curl operator on our grid and define the

loss function as the difference between ∇ × (𝑢𝑜 , 𝑣𝑜 , 0) and (0, 0, 2𝜔).
The internal surface of the tunnel is represented by a NURBS surface

with 32 free control points to be optimized.

Fluidic Switch. In this problem, we consider a fluidic device with

a switch that can kinematically change the fluid-solid boundary

in a fluidic domain. By switching on and off, we expect the outlet

flow velocity from the device to transition between two prescribed

velocity profiles (Fig. 1). We set up our fluidic domain with one

input, two outputs, and a solid obstacle immersed in the fluidic

domain. The solid obstacle is parameterized by a NURBS surface

whose 24 control points are to be optimized, and it is pinned on the

bottom plate so it can rotate along a vertical axis. The two states

of the switch set the rotational angle of the solid obstacle to two

different values, and the loss function equals the sum of the losses

from the two states, which is defined as the difference between the

actual output velocity and a prescribed desired velocity profile (Fig. 1

rightmost). Note that the switching angle in this design problem is

also a parameter to be optimized.

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

197:12 • Du et al.

No-slip boundary

No-separation boundary

Target outlet velocity fieldOutlet velocity field

0 1.5Velocity

Velocity field at z2 Velocity field at z1

z1

z2

Outlet

z1

z2

Outlet

Fig. 5. A comparison between optimizing the Fluidic Twister with no-slip boundaries (top) and no-separation boundaries (bottom). We show the
velocity field at three cross-sectional areas (middle three columns) of the optimized design (left column) as well as the target, twisted field (right
column) at the outlet (green). With the no-slip boundary, the resulting velocity field is attenuated significantly. With the no-separation boundary, a
desired helical pattern emerges to facilitate the swirling of the outlet flow.

0.0

0.4

1.6

1.2

252015105
Function evaluations

Loss
0.8

2.0

0

Fig. 6. The evolution of the shape and the loss for the design of the
Fluidic Switch over 25 function calls.

8.2 Evaluation
Implementation details. We implemented our algorithm in C++

on a Linux workstation with 8 CPU cores and 32G memory. We

used PARDISO [Schenk and Gärtner 2004], a parallel linear system

solver for symmetric indefinite matrices, to solve the linear systems

of equations in both forward simulation and gradient computation.

To speed up the computation, during each function call to compute

forward simulation, we pre-factorized the matrix and reused the

factorization in gradient computation with new right-hand sides

for gradient computation. For each design problem, we start our

optimization by sampling random designs and picking the best one

to initialize the L-BFGS local optimization algorithm. The actual

number of samples depends on the complexity of the design problem.

In our experiments, we used 10 samples for problems with ≤ 10

parameters and 100 samples for larger problems. Random sampling

does not create a significant time burden for our algorithm because

it is easily parallelizable and requires forward simulation only. We

terminated the optimizer when a maximum number of function

evaluations (50 in our experiments) was reached or the solution

converged into a local minimum. For all examples, we consistently

observed their convergence before themaximumnumber of function

evaluations is reached.

Performance improvement. We report the statistics about the opti-

mization process in Table 1 and the final designs discovered by our

algorithm in Fig. 1, 2, 4, 5, and 6. Our algorithm improved the initial

guess across the board and the final design performed significantly

better than an average design (loss = 1) in all examples, with the

actual improvement margin largely depending on the complexity

of each problem.

It is worth mentioning that many of the novel designs revealed

by our algorithm not only are physically plausible but also match

the physical intuition behind the design intent. For example, in

the Amplifier problem, the evolution of the boundaries narrowed

the outlet so that the flow jets at a desired, faster speed (Fig. 2). In

the Funnel example, a diagonal tunnel was formed near the end

of the output in order to enforce an outlet flow whose direction

is invariant to inputs (Fig. 4 middle). The most notable discovery

of the novel design comes from the Fluidic Twister: although the

internal surface is parameterized by a NURBS surface, the final

solution strongly resembles a helical surface generated by a rotated,

descending ellipsoid (Fig. 5). The emergence of a helical surface in

this design problem is no coincidence and clearly reflects the design

intent of generating a swirling flow.

Linearity in the fluidic devices. The KKT system in Sec. 6 connects

the velocity field 𝒗, the right-hand side of all boundary conditions,

and the design parameters 𝜽 in a single linear system of equations

whose left-hand matrix depends on 𝜽 only. As a result, when we

fix 𝜽 , the response of the system is a linear function of the input

to the system, which comes naturally from the analogy between

Stokes flow and linear elasticity. Moreover, since by definition Stokes

flow is steady-state, the fluidic system we investigate in this paper

is therefore linear time-invariant (LTI). It is well known that the

behavior of an LTI system can be fully analyzed and well understood

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:13

by investigating its response to a small number of base inputs,

and we made heavy use of this fact in our experiments to simplify

the design problem. For example, when designing the Funnel, it is

sufficient to ensure the outlet flow is diagonal under two inputs

(𝑣𝑖1 , 𝑣𝑖2) = (1, 0) and (0, 1) only, and the outlet flow in response to

(0.5, 0.5) equals the average of the outlet flows from inputs (1, 0)
and (0, 1) (Fig. 4 middle).

It is worth pointing out that while the fluidic system is LTI with

a fixed 𝜽 , the full optimization problem is still highly nonlinear

and non-convex. This is because 𝜽 parameterizes the fluid-solid

boundary in a nontrivial way, which is embedded in the left-hand

side of the KKT system.

Boundary conditions. Our convenient, explicit boundary condi-

tions are flexible, and are a key ingredient in unlocking many of the

demonstrations here. Particularly of note are the Fluidic Twister and

the Fluidic Gate examples. No-separation boundaries are necessary

to build up the circumferential “swirling” motion seen in the Twister

example. The no-slip boundary condition, on the other hand, sig-

nificantly dampens the velocities along the fluid-solid boundary,

inhibiting the vortical flow. The two boundary conditions led to

significantly different optimization results (Table 1): while a Twister

optimized with a no-separation boundary achieves almost optimal

performance (loss ≈ 0), optimization with a no-slip boundary hardly

made any progress and performs no better than a random guess

(loss ≈ 1). By contrast, the Fluidic Switch relies on no-slip boundary

conditions to dampen the flow along the “off” path. If no-separation

boundary conditions were to be used here, the rotational switch

would need to be physically translated between configurations to

completely block the “off” branches to achieve zero velocity; other-

wise, some non-zero velocity will persist. We stress that our accom-

modation of several boundary conditions is a feature, as an engineer

can achieve any of them by selecting appropriate materials along

the boundary interface.

0 5 10 15 20 25
function calls

10 23

10 19

10 15

10 11

10 7

10 3

101

no
rm

al
ize

d
lo

ss

with random sampling
without random sampling
average performance

0 5 10 15 20 25
function calls

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
lo

ss

with random sampling
without random sampling
average performance

Fig. 7. Ablation study on the necessity of global random sampling in
two design problems: Amplifier (left) and Superposition Gate (right).
Each blue line indicates the process of running L-BFGS optimization
directly from a random design, and the red line shows our optimization
progress with an initial guess from the best of 10 random designs.While
a particularly good random seed can outperform our method, the flat
tails frommultiple random seeds reveal that local minima are common
in such design problems.

Local minima. Since our gradient-based optimization pipeline is

inherently a local optimization method, it can suffer from getting

trapped into local minima (Fig. 7). The distribution of local minima

is problem-specific and affected heavily by the landscape of the

loss function. We have partially alleviated this issue by randomly

sampling multiple guesses prior to optimization and picking the best

as an initial guess. While more advanced global search heuristics can

be applied to our pipeline, we found this simple random sampling

scheme sufficient to generate reasonably functional devices in all

our design problems.

Solution convergence. To prove our simulation converges under

refinement and verify our governing equations approximate the

truly incompressible Stokes flow, we experimented with the 2D

amplifier example with an initial resolution of 32× 24 cells. We then

subdivided the domain by a factor of 2, 4, 8, 16, and 32, resulting

in a resolution of 1024 × 768 eventually (Fig. 8 top). Additionally,

we started with 32 × 24 cells and increased the Poisson’s ratio from

0.45 until 0.499 (Fig. 8 bottom). We observed that in both cases,

the velocity fields converged to a limit, which indicates that our

quasi-incompressible Stokes flow model well approximates the truly

incompressible Stokes flow.

32 x 24 1024 x 768

 = 0.45 = 0.499

0 10 20 30
refinement

0

2

4

6

re
la

tiv
e

er
ro

r (
%

)

0.46 0.48 0.50
0

10

20

30

40

re
la

tiv
e

er
ro

r (
%

)

Fig. 8. Convergence of our quasi-incompressible Stokes flow tested on
the Amplifier example. Top: we solve the velocity field starting with
32 × 24 cells (middle) and increase the resolution by a factor of 2, 4, 8,
16, and 32 (right). The relative error (left, measured by comparing to
the solution solved with 32× resolution) decreases as the velocity field
is solved under refinement. Bottom: we solve the velocity field with
𝜈 = 0.45 (middle), 0.47, 0.48, 0.49, 0.495, and 0.499 (right). The relative
error (left, measured by comparing to 𝜈 = 0.499) converges to 0 as 𝜈
converges to 0.5.

9 LIMITATIONS AND FUTURE WORK
The long-term vision of computational fluidics design is ambitious,

ultimately aspiring to the automated design of complex devices such

as engines, pumps, and heart valves. Optimizing such machinery,

however, is extremely challenging, requiring modeling of complex

fluid dynamics while optimizing over highly complex components.

We see our work as a meaningful first step toward this eventual

goal. We took the Stokes flow as our fluid model, which has been

used widely in engineering design and optimization problems over

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

197:14 • Du et al.

the past decades to model the steady-state, linearized fluidic trans-

portation problems with a relatively low Reynolds number. Further,

Stokes flow is computationally well-suited to design problems, as it

is well-conditioned, linear, and provides smooth gradients, allowing

for a fast inner loop of complex outer design problems. An inter-

esting future direction to explore is to improve the expressibility

of the fluid simulation method. Particularly interesting would be a

steady-state Navier-Stokes fluid simulator that considers the effect

of an advection term. It is also interesting to consider the effect

of deformable boundaries, allowing for the design of devices with

fluid-elastic coupling for applications in, e.g., soft robotics.

The second drawback of our method lies in our choice of param-

eterized level-sets as a design space. Such a design space was delib-

erately chosen as it allows for sub-grid shape design with smooth,

clearly defined boundaries that separate fluid and solid regions, a

common failing of topology optimization, which provides no such

guarantees and only operates on the non-smooth grid cells them-

selves (thus making boundary conditions tricky to reason about).

Still, this parameterization must be chosen by a user. A tractable

method for searching both over topology while keeping boundaries

smooth and regular is desired.

Third, although our Stokes solver allows for sub-grid resolution,

it does not scale to arbitrarily large scenes, as it is bottlenecked

by the performance of our choice of linear system solver and the

optimizer. A parallel multigrid solver along with application of the

adjoint method in gradient computation would allow our framework

to scale to support larger problems. It would also be interesting

to explore other optimizers like alternating direction method of

multipliers (ADMM) [Overby et al. 2017] in our problem especially

when the objective is separable on variables.

Fourth, although we purposefully kept our simulation physics-

based so as to make our method amenable to real-world manufac-

turing, we did not fabricate and test any of our devices. Our parame-

terization allows engineers to specify boundaries that are physically

manufacturable, without the worry for non-manufacturable parts

(such as disconnected pieces in 3D). It would be interesting to phys-

ically fabricate our optimized devices and benchmark the predictive

accuracy of the simulation as compared to the realized flow.

Finally, despite our initial sampling pre-processing step, whose

coarse global search improves over a random starting point, there is

no guarantee that our algorithm will converge to a global minimum.

This is a drawback of all local continuous optimization methods

like the one we employ. While smoothness of our domain helps in

that we rarely find bad local minima, an algorithm for finding more

globally optimal solutions is desired.

ACKNOWLEDGMENTS
Tao Du, Kui Wu, and Andrew Spielberg would like to thank But-

tercup Foshey (and also Michael Foshey) for moral support during

this work. Wojciech Matusik acknowledges the funding support

from IARPA under grant 2019-19020100001. Bo Zhu acknowledges

the funding supports from Neukom Institute CompX Faculty Grant,

Burke Research Initiation Award, NSF 1919647, and Toyota TEMA

North America Inc. Eftychios Sifakis acknowledges the funding

supports from NSF IIS-2008584, CCF-1812944, and IIS-1763638.

REFERENCES
Niels Aage, Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2017. Giga-Voxel

ComputationalMorphogenesis for Structural Design. Nature 550, 7674 (2017), 84–86.
Niels Aage, Thomas H. Poulsen, Allan Gersborg-Hansen, and Ole Sigmund. 2008.

Topology Optimization of Large Scale Stokes Flow Problems. Structural and Multi-
disciplinary Optimization 35, 2 (2008), 175–180.

Joe Alexandersen and Casper Schousboe Andreasen. 2020. A Review of Topology

Optimisation for Fluid-Based Problems. Fluids 5, 1 (2020), 29.
Ryoichi Ando, Nils Thürey, and ChrisWojtan. 2013. Highly Adaptive Liquid Simulations

on Tetrahedral Meshes. ACM Trans. Graph. 32, 4, Article 103 (July 2013), 10 pages.

https://doi.org/10.1145/2461912.2461982

Casper Schousboe Andreasen and Ole Sigmund. 2013. Topology Optimization of Fluid-

Structure-Interaction Problems in Poroelasticity. Computer Methods in Applied
Mechanics and Engineering 258 (2013), 55–62.

Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving

Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps.

ACM Trans. Graph. 35, 4, Article 97 (July 2016), 12 pages. https://doi.org/10.1145/

2897824.2925919

David L. Barrow and Philip W. Smith. 1979. Spline Notation Applied to a Volume

Problem. The American Mathematical Monthly 86, 1 (1979), 50–51.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational

Framework for Accurate Solid-Fluid Coupling. In ACM SIGGRAPH 2007 Papers (San
Diego, California) (SIGGRAPH ’07). Association for Computing Machinery, New

York, NY, USA, 100–es. https://doi.org/10.1145/1275808.1276502

William Baxter, Yuanxin Liu, and Ming C. Lin. 2004. A Viscous Paint Model for

Interactive Applications. Computer Animation and Virtual Worlds 15, 3-4 (2004),
433–441.

Jacob Bedrossian, James H. Von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph Teran.

2010. A Second Order Virtual Node Method for Elliptic Problems with Interfaces

and Irregular Domains. J. Comput. Phys. 229, 18 (2010), 6405–6426.
Reza Behrou, Ram Ranjan, and James K. Guest. 2019. Adaptive Topology Optimization

for Incompressible Laminar Flow Problems with Mass Flow Constraints. Computer
Methods in Applied Mechanics and Engineering 346 (2019), 612–641.

Martin Philip Bendsoe and Ole Sigmund. 2013. Topology Optimization: Theory, Methods,
and Applications. Springer Science & Business Media.

Haimasree Bhattacharya, Michael Bang Nielsen, and Robert Bridson. 2012. Steady State

Stokes Flow Interpolation for Fluid Control. In Eurographics (Short Papers). Citeseer,
57–60.

Thomas Borrvall and Joakim Petersson. 2003. Topology Optimization of Fluids in Stokes

Flow. International Journal for Numerical Methods in Fluids 41, 1 (2003), 77–107.
Franco Brezzi and Michel Fortin. 2012. Mixed and Hybrid Finite Element Methods. Vol. 15.

Springer Science & Business Media.

Robert Bridson. 2015. Fluid Simulation for Computer Graphics. CRC press.

Walter Jesus Paucar Casas and Renato Pavanello. 2017. Optimization of Fluid-Structure

Systems by Eigenvalues Gap Separation with Sensitivity Analysis. Applied Mathe-
matical Modelling 42 (2017), 269–289.

Vivien J. Challis and James K. Guest. 2009. Level Set Topology Optimization of Fluids

in Stokes Flow. Internat. J. Numer. Methods Engrg. 79, 10 (2009), 1284–1308.
Mengyu Chu and Nils Thürey. 2017. Data-Driven Synthesis of Smoke Flows with

CNN-Based Feature Descriptors. ACM Trans. Graph. 36, 4, Article 69 (July 2017),

14 pages. https://doi.org/10.1145/3072959.3073643

Christophe Daux, Nicolas Moës, John Dolbow, Natarajan Sukumar, and Ted Belytschko.

2000. Arbitrary Branched and Intersecting Cracks with the Extended Finite Element

Method. Internat. J. Numer. Methods Engrg. 48, 12 (2000), 1741–1760.
Joshua D. Deaton and Ramana V. Grandhi. 2014. A Survey of Structural and Multidisci-

plinary Continuum Topology Optimization: Post 2000. Structural and Multidisci-
plinary Optimization 49, 1 (2014), 1–38.

Cetin B. Dilgen, Sumer B. Dilgen, David R. Fuhrman, Ole Sigmund, and Boyan S. Lazarov.

2018a. Topology Optimization of Turbulent Flows. Computer Methods in Applied
Mechanics and Engineering 331 (2018), 363–393.

Sumer B. Dilgen, Cetin B. Dilgen, David R. Fuhrman, Ole Sigmund, and Boyan S. Lazarov.

2018b. Density Based Topology Optimization of Turbulent Flow Heat Transfer

Systems. Structural and Multidisciplinary Optimization 57, 5 (2018), 1905–1918.

Marie-Lena Eckert, Kiwon Um, and Nils Thürey. 2019. ScalarFlow: A Large-Scale

Volumetric Data Set of Real-World Scalar Transport Flows for Computer Animation

and Machine Learning. ACM Trans. Graph. 38, 6, Article 239 (Nov. 2019), 16 pages.
https://doi.org/10.1145/3355089.3356545

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002. Animation and Ren-

dering of Complex Water Surfaces. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques. 736–744.

Anton Evgrafov. 2006. Topology Optimization of Slightly Compressible Fluids. ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathe-
matik und Mechanik: Applied Mathematics and Mechanics 86, 1 (2006), 46–62.

Ronald Fedkiw, Tariq Aslam, Barry Merriman, Stanley Osher, et al. 1999. A Non-

Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid

Method). J. Comput. Phys. 152, 2 (1999), 457–492.

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

https://doi.org/10.1145/2461912.2461982
https://doi.org/10.1145/2897824.2925919
https://doi.org/10.1145/2897824.2925919
https://doi.org/10.1145/1275808.1276502
https://doi.org/10.1145/3072959.3073643
https://doi.org/10.1145/3355089.3356545

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow • 197:15

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke.

In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. 15–22.

Bryan E. Feldman, James F. O’Brien, Bryan M. Klingner, and Tolga G. Goktekin. 2005.

Fluids in DeformingMeshes. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Los Angeles, California) (SCA ’05). Association
for Computing Machinery, New York, NY, USA, 255–259. https://doi.org/10.1145/

1073368.1073405

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-Scale Liquid

Simulation on Adaptive Hexahedral Grids. IEEE Transactions on Visualization and
Computer Graphics 20, 10 (2014), 1405–1417.

Francisco. J. Gaspar, José L. Gracia, Francisco J. Lisbona, and Cornelis W. Oosterlee. 2008.

Distributive Smoothers in Multigrid for Problems with Dominating Grad–Div Oper-

ators. Numerical Linear Algebra with Applications 15, 8 (2008), 661–683. https://doi.

org/10.1002/nla.587 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.587

Allan Gersborg-Hansen, Ole Sigmund, and Robert B. Haber. 2005. Topology Optimiza-

tion of Channel Flow Problems. Structural and Multidisciplinary Optimization 30, 3

(2005), 181–192.

James K. Guest and Jean H. Prévost. 2006. Topology Optimization of Creeping Fluid

Flows Using a Darcy–Stokes Finite Element. Internat. J. Numer. Methods Engrg. 66,
3 (2006), 461–484.

Jeffrey Lee Hellrung, LumingWang, Eftychios Sifakis, and Joseph Teran. 2012. A Second

Order Virtual Node Method for Elliptic Problems with Interfaces and Irregular

Domains in Three Dimensions. J. Comput. Phys. 231, 4 (2012), 2015–2048.
Philipp Holl, Vladlen Koltun, and Nils Thürey. 2020. Learning to Control PDEs with

Differentiable Physics. In International Conference on Learning Representations.
Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.

Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. ChainQueen: A Real-

Time Differentiable Physical Simulator for Soft Robotics. In International Conference
on Robotics and Automation. IEEE, 6265–6271.

Thomas J. R. Hughes. 2012. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Courier Corporation.

Hikaru Ibayashi, Chris Wojtan, Nils Thürey, Takeo Igarashi, and Ryoichi Ando. 2018.

Simulating Liquids on Dynamically Warping Grids. IEEE Transactions on Visualiza-
tion and Computer Graphics (2018).

Byungsoo Kim, Vinicius C. Azevedo, Nils Thürey, Theodore Kim, Markus Gross, and

Barbara Solenthaler. 2019. Deep Fluids: A Generative Network for Parameterized

Fluid Simulations. InComputer Graphics Forum, Vol. 38.Wiley Online Library, 59–70.

Nipun Kwatra, Jonathan Su, Jón T. Grétarsson, and Ronald Fedkiw. 2009. A Method

for Avoiding the Acoustic Time Step Restriction in Compressible Flow. J. Comput.
Phys. 228, 11 (2009), 4146–4161.

Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational Stokes: A

Unified Pressure-Viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph.
36, 4, Article 101 (July 2017), 11 pages. https://doi.org/10.1145/3072959.3073628

Benny Lautrup. 2004. Physics of Continuous Matter: Exotic and Everyday Phenomena in
the Macroscopic World. CRC press.

Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2009. Comprehensive

Biomechanical Modeling and Simulation of the Upper Body. ACM Trans. Graph. 28,
4, Article 99 (Sept. 2009), 17 pages. https://doi.org/10.1145/1559755.1559756

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. 2019.

Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects,

and Fluids. (2019).

Junbang Liang, Ming C. Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation

for Inverse Problems. InAdvances in Neural Information Processing Systems. 771–780.
Sen Lin, Longyu Zhao, James K. Guest, Timothy P. Weihs, and Zhenyu Liu. 2015.

Topology Optimization of Fixed-Geometry Fluid Diodes. Journal of Mechanical
Design 137, 8 (2015).

Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid. ACM Trans.
Graph. 37, 6, Article 251 (Dec. 2018), 14 pages. https://doi.org/10.1145/3272127.

3275012

Kurt Maute and Matthew Allen. 2004. Conceptual Design of Aeroelastic Structures by

Topology Optimization. Structural and Multidisciplinary Optimization 27, 1-2 (2004),

27–42.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph

Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with

Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011), 12 pages.

https://doi.org/10.1145/2010324.1964932

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control

Using the Adjoint Method. ACM Trans. Graph. 23, 3 (Aug. 2004), 449–456. https:

//doi.org/10.1145/1015706.1015744

Nicolas Moës, John Dolbow, and Ted Belytschko. 1999. A Finite Element Method for

Crack Growth without Remeshing. Internat. J. Numer. Methods Engrg. 46, 1 (1999),
131–150.

Maxim Olshanskii, Gert Lube, Timo Heister, and Johannes Löwe. 2009. Grad-Div

Stabilization and Subgrid Pressure Models for the Incompressible Navier-Stokes

Equations. Computer Methods in Applied Mechanics and Engineering 198, 49-52

(2009), 3975–3988.

Stanley Osher and Ronald Fedkiw. 2003. Level Set Methods and Dynamic Implicit Surfaces.
Applied Mathematical Sciences, Vol. 153. Springer. I–XIII, 1–273 pages.

Matthew Overby, George E Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective

Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
Transactions on Visualization and Computer Graphics 23, 10 (2017), 2222–2234.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive

Localized Liquid Motion Editing. ACM Trans. Graph. 32, 6, Article 184 (Nov. 2013),
10 pages. https://doi.org/10.1145/2508363.2508429

Evangelos M. Papoutsis-Kiachagias and Kyriakos C. Giannakoglou. 2016. Continuous

Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization:

Industrial Applications. Archives of Computational Methods in Engineering 23, 2

(2016), 255–299.

Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of Complex

Nonlinear Elastic Bodies Using Lattice Deformers. ACM Trans. Graph. 31, 6, Article
197 (Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366216

Karthik Raveendran, Nils Thürey, Chris Wojtan, and Greg Turk. 2012. Controlling

Liquids Using Meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics
Association, Goslar, DEU, 255–264.

George I. N. Rozvany. 2009. A Critical Review of Established Methods of Structural

Topology Optimization. Structural and Multidisciplinary Optimization 37, 3 (2009),

217–237.

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid Dynamics for Deep

Neural Networks (Proceedings of Machine Learning Research, Vol. 87). PMLR, 317–335.

http://proceedings.mlr.press/v87/schenck18a.html

Olaf Schenk and Klaus Gärtner. 2004. Solving Unsymmetric Sparse Systems of Linear

Equations with PARDISO. Future Generation Computer Systems 20, 3 (2004), 475–487.
Craig Schroeder, Wen Zheng, and Ronald Fedkiw. 2012. Semi-Implicit Surface Tension

Formulation with a Lagrangian Surface Mesh on an Eulerian Simulation Grid. J.
Comput. Phys. 231, 4 (2012), 2092–2115.

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids:

A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH ’12). Association for

Computing Machinery, New York, NY, USA, Article 20, 50 pages. https://doi.org/

10.1145/2343483.2343501

Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. 2007. Hybrid Simu-

lation of Deformable Solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (San Diego, California) (SCA ’07). Eurographics
Association, Goslar, DEU, 81–90.

Ole Sigmund and Kurt Maute. 2013. Topology Optimization Approaches. Structural
and Multidisciplinary Optimization 48, 6 (2013), 1031–1055.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley

Publishing Co., USA, 121–128. https://doi.org/10.1145/311535.311548

Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran,

and Andrew Selle. 2014. Augmented MPM for Phase-Change and Varied Materials.

ACM Trans. Graph. 33, 4, Article 138 (July 2014), 11 pages. https://doi.org/10.1145/

2601097.2601176

Nobuyuki Umetani and Bernd Bickel. 2018. Learning Three-Dimensional Flow for

Interactive Aerodynamic Design. ACM Trans. Graph. 37, 4, Article 89 (July 2018),

10 pages. https://doi.org/10.1145/3197517.3201325

Carlos H. Villanueva and Kurt Maute. 2017. CutFEM Topology Optimization of 3D

Laminar Incompressible Flow Problems. Computer Methods in Applied Mechanics
and Engineering 320 (2017), 444–473.

Gil Ho Yoon. 2010. Topology Optimization for Stationary Fluid-Structure Interaction

Problems Using a New Monolithic Formulation. Internat. J. Numer. Methods Engrg.
82, 5 (2010), 591–616.

Mingdong Zhou, Haojie Lian, Ole Sigmund, and Niels Aage. 2018. Shape Morph-

ing and Topology Optimization of Fluid Channels by Explicit Boundary Tracking.

International Journal for Numerical Methods in Fluids 88, 6 (2018), 296–313.
Shiwei Zhou and Qing Li. 2008. A Variational Level Set Method for the Topology

Optimization of Steady-State Navier-Stokes Flow. J. Comput. Phys. 227, 24 (2008),
10178–10195.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An Efficient

Multigrid Method for the Simulation of High-Resolution Elastic Solids. ACM Trans.
Graph. 29, 2, Article 16 (April 2010), 18 pages. https://doi.org/10.1145/1731047.

1731054

Yongning Zhu, Yuting Wang, Jeffrey Hellrung, Alejandro Cantarero, Eftychios Sifakis,

and Joseph Teran. 2012. A Second-Order Virtual Node Algorithm for Nearly Incom-

pressible Linear Elasticity in Irregular Domains. J. Comput. Phys. 231, 21 (2012),
7092–7117.

ACM Trans. Graph., Vol. 39, No. 6, Article 197. Publication date: December 2020.

https://doi.org/10.1145/1073368.1073405
https://doi.org/10.1145/1073368.1073405
https://doi.org/10.1002/nla.587
https://doi.org/10.1002/nla.587
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.587
https://doi.org/10.1145/3072959.3073628
https://doi.org/10.1145/1559755.1559756
https://doi.org/10.1145/3272127.3275012
https://doi.org/10.1145/3272127.3275012
https://doi.org/10.1145/2010324.1964932
https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1145/2508363.2508429
https://doi.org/10.1145/2366145.2366216
http://proceedings.mlr.press/v87/schenck18a.html
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/2601097.2601176
https://doi.org/10.1145/2601097.2601176
https://doi.org/10.1145/3197517.3201325
https://doi.org/10.1145/1731047.1731054
https://doi.org/10.1145/1731047.1731054

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Governing Partial Differential Equations
	5 Numerical discretization
	6 Forward Simulation
	7 Optimization
	8 Results and Discussions
	8.1 Design Problems
	8.2 Evaluation

	9 Limitations and future work
	Acknowledgments
	References

