
13

DiffPD: Differentiable Projective Dynamics

TAO DU, KUI WU, PINGCHUAN MA, SEBASTIEN WAH, ANDREW SPIELBERG, DANIELA RUS, and
WOJCIECH MATUSIK, MIT CSAIL

We present a novel, fast differentiable simulator for soft-body learning and

control applications. Existing differentiable soft-body simulators can be

classified into two categories based on their time integration methods: Sim-

ulators using explicit timestepping schemes require tiny timesteps to avoid

numerical instabilities in gradient computation, and simulators using im-

plicit time integration typically compute gradients by employing the ad-

joint method and solving the expensive linearized dynamics. Inspired by

Projective Dynamics (PD), we present Differentiable Projective Dy-

namics (DiffPD), an efficient differentiable soft-body simulator based on

PD with implicit time integration. The key idea in DiffPD is to speed up

backpropagation by exploiting the prefactorized Cholesky decomposition

in forward PD simulation. In terms of contact handling, DiffPD supports

two types of contacts: a penalty-based model describing contact and fric-

tion forces and a complementarity-based model enforcing non-penetration

conditions and static friction. We evaluate the performance of DiffPD

and observe it is 4–19 times faster compared with the standard Newton’s

method in various applications including system identification, inverse de-

sign problems, trajectory optimization, and closed-loop control. We also

apply DiffPD in a reality-to-simulation (real-to-sim) example with con-

tact and collisions and show its capability of reconstructing a digital twin

of real-world scenes.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Projective dynamics, differentiable

simulation

ACM Reference format:

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela

Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynam-

ics. ACM Trans. Graph. 41, 2, Article 13 (November 2021), 21 pages.

https://doi.org/10.1145/3490168

1 INTRODUCTION

The recent surge of differentiable physics witnessed the emergence

of differentiable simulators as well as their success in various in-

verse problems that have simulation inside an optimization loop.

With additional knowledge of gradients, a differentiable simulator

provides more guidance on the evolution of a physics system. This

extra information, when properly combined with mature gradient-

based optimization techniques, facilitates the quantitative study of

This work is sponsored by Defense Advanced Research Projects Agency (DARPA)
under Grant No. FA8750-20-C-0075, Intelligence Advanced Research Projects Activity
(IARPA) under Grant No. 2019-19020100001, and National Science Foundation (NSF)
Award 2106962: Computational Design of Complex Fluidic Systems.
Authors’ addresses: T. Du, K. Wu, P. Ma, S. Wah, A. Spielberg, D. Rus, and W. Matusik,
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA; emails: {taodu, kuiwu,
pcma}@csail.mit.edu, sebwah@mit.edu, {aespielberg, rus, wojciech}@csail.mit.edu.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

© 2021 Copyright held by the owner/author(s).
0730-0301/2021/11-ART13
https://doi.org/10.1145/3490168

various downstream applications, e.g., system identification or pa-

rameter estimation, motion planning, controller design and opti-

mization, and inverse design problems.

In this work, we focus on the problem of developing a differ-

entiable simulator for soft-body dynamics. Despite its potential in

many applications, research on differentiable soft-body simulators

is still in its infancy due to the large number of degrees of freedom

(DoFs) in soft-body dynamics. One learning-based approach is to

approximate the true soft-body dynamics by way of a neural net-

work for fast, automatic differentiation [Li et al. 2019b; Sanchez-

Gonzalez et al. 2020]. For these methods, the simulation process

is no longer physics-based but purely based on a neural network,

which might lead to physically implausible and uninterpretable re-

sults and typically do not generalize well.

Another line of research, which is more physics-based, is to

differentiate the governing equations of soft-body dynamics di-

rectly [Geilinger et al. 2020; Hahn et al. 2019; Hu et al. 2020,

2019]. We classify these simulators into explicit and implicit simu-

lators based on their timestepping schemes. Explicit differentiable

simulators implement explicit time integration in forward simula-

tion and directly apply the chain rule to derive any gradients in-

volved. While explicit differentiable simulation is fast to compute

and straightforward to implement, its explicit nature requires a

tiny timestep to avoid numerical instability. Moreover, when de-

riving the gradients, an output value (typically a reward or an

error metric) needs to be backpropagated through all timesteps.

Such a process requires the state at every timestep to be stored in

memory regardless of the timestepping scheme. Therefore, explicit

differentiable simulators typically consume orders of magnitude

more memory than their implicit counterparts, and sophisticated

schemes like checkpoints are needed to alleviate the memory is-

sue [Hu et al. 2019].

Unlike explicit differentiable simulators, implicit simulation en-

ables a much larger timestep. It is more robust numerically and

much more memory-efficient during backpropagation. However,

an implicit differentiable simulator typically implements Newton’s

method in forward simulation and the adjoint method during

backpropagation [Geilinger et al. 2020; Hahn et al. 2019], both

of which require the expensive linearization of the soft-body dy-

namics. Even though techniques for expediting the forward soft-

body simulation with an implicit timestepping scheme have been

developed extensively, the corresponding backpropagation pro-

cess remains a bottleneck for downstream applications in inverse

problems.

In this work, we present DiffPD, an efficient differentiable soft-

body simulator that implements the finite element method

(FEM) and an implicit timestepping scheme with certain assump-

tions on the material and contact model. We draw inspiration from

Projective Dynamics (PD) [Bouaziz et al. 2014], a fast and stable

algorithm that can be used for solving implicit time integration

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

https://doi.org/10.1145/3490168
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490168
https://www.acm.org/publications/policies/artifact-review-and-badging-current

13:2 • T. Du et al.

with FEM when the elastic energy of the material model has a spe-

cific quadratic form. The key observation we share with PD is that

the computation bottleneck in both forward simulation and back-

propagation is due to the nonlinearity of soft-body dynamics. By

decoupling nonlinearity in the system dynamics, PD proposes a

global-local solver where the global step solves a prefactorized lin-

ear system of equations and the local step resolves the nonlineari-

ties in the physics and can be massively parallelized. Previous work

in PD has demonstrated its efficacy in forward simulation and has

reported significant speedup over the classical Newton’s method.

Our core contribution is to establish that with proper linear alge-

braic reformulation, the same idea of nonlinearity decomposition

from PD can be fully extended to backpropagation as well.

To support differentiable contact handling, we revisit contact

models used in previous PD papers, many of which choose to

implement a soft contact force based on a fictitious collision en-

ergy [Bouaziz et al. 2014; Dinev et al. 2018a, b; Li et al. 2019a; Liu

et al. 2017; Wang 2015; Wang and Yang 2016]. DiffPD naturally

supports such energy-based contact and friction models as they

can be seamlessly integrated into the PD framework. One notable

exception is Ly et al. [2020], which solves dry frictional contact

in the standard PD framework. We have also explored the possi-

bility of making the dry frictional contact model differentiable in

DiffPD. Using the fact that contact vertices must be on the soft

body’s surface, which typically have much fewer DoFs than the

interior vertices, we present a novel solution combining Cholesky

factorization and low-rank matrix update to supporting differen-

tiable static friction and non-penetration contact.

We demonstrate the efficacy of DiffPD in various 3D applica-

tions with up to nearly 30,000 DoFs. These applications include

system identification, initial state optimization, motion planning,

and end-to-end closed-loop control optimization. We compare

DiffPD with both explicit and implicit differentiable FEM simula-

tions and observe DiffPD’s forward and backward calculation is

4–19 times faster than Newton’s method when assumptions in PD

hold. Furthermore, we embed DiffPD as a differentiable layer in

a deep learning pipeline for training closed-loop neural network

controllers for soft robots and report a speedup of 9–11 times in

wall-clock time compared with deep reinforcement learning

(RL) algorithms. Finally, we show a reality-to-simulation

(real-to-sim) application that uses our differentiable simulator

to reconstruct a collision event between two tennis balls from a

video input, which we hope can inspire follow-up work to solve

simulation-to-reality (sim-to-real) problems in the future.

To summarize, our article contributes the following:

— a PD-based differentiable soft-body simulator that is signif-

icantly faster than differentiable simulators using the stan-

dard Newton’s method;

— a differentiable collision handling algorithm that han-

dles penalty-based contact and friction forces or

complementarity-based non-penetration contact and

static friction; and

— demonstrations of the efficacy of our method on a wide range

of applications, including system identification, inverse

design problems, motion planning, robotics control, and a

real-to-sim experiment, using material models compatible

with PD and the simplified contact model stated above.

2 RELATED WORK

We review methods on differentiable simulators and PD with con-

tact handling, followed by a short summary of soft robot design

and control methods. We summarize the differences between our

work and previous papers in Table 1.

Differentiable simulation. Many recent advances in differen-

tiable physics facilitate the application of gradient-based methods

in robotics learning, control, and design tasks. Several differen-

tiable simulators have been developed for rigid-body dynam-

ics [de Avila Belbute-Peres et al. 2018; Degrave et al. 2019; Macklin

et al. 2020; Popović et al. 2003; Toussaint et al. 2018], soft-body dy-

namics [Geilinger et al. 2020; Hahn et al. 2019; Hu et al. 2020, 2019],

cloth [Liang et al. 2019; Qiao et al. 2020], and fluid dynamics [Holl

et al. 2020; McNamara et al. 2004; Schenck and Fox 2018; Treuille

et al. 2003; Wojtan et al. 2006]. Here we mainly discuss methods

for soft-body dynamics as it is the focus of our work. Chain-

Queen [Hu et al. 2019] and its follow-up work DiffTaichi [Hu et al.

2020] introduce differentiable physics-based soft-body simulators

using the material point method (MPM), which uses particles

to keep track of the full states of the dynamical system and solves

the momentum equations as well as collisions on a background

Eulerian grid. However, the explicit time integration in their

methods requires small timesteps to preserve numerical stability,

leading to large memory consumption during backpropagation. To

resolve this issue, ChainQueen proposes to cache checkpoint steps

in memory and reconstructs the states by rerunning forward sim-

ulation during backpropagation, which increases implementation

complexity and introduces extra time cost. Further, solving colli-

sions on an Eulerian grid may introduce artifacts depending on

the resolution of the grid [Han et al. 2019]. Another particle-based

strategy is to approximate soft-body dynamics with graph neural

networks [Li et al. 2019b; Sanchez-Gonzalez et al. 2020], which is

naturally equipped with differentiability but may result in physi-

cally implausible behaviors. Our work is most similar to Hahn et al.

[2019] and Geilinger et al. [2020], which use differentiable implicit

FEM simulators. Compared with other differentiable deformable

body simulators [Geilinger et al. 2020; Hahn et al. 2019; Liang et al.

2019; Qiao et al. 2020] that systematically apply a combination

of the adjoint method and sensitivity analysis to derive gradients,

DiffPD puts a special focus on a more strategic backpropagation

scheme that leverages the unique structure in PD, leading to empir-

ically faster gradient computation. Finally, DiffPD is also relevant

to Li et al. [2020] that introduce a contact-aware Newton-type

solver and handle contact robustly with a differentiable barrier

function for soft-body simulation. Although Li et al. [2020] do not

discuss gradient computation or present applications that benefit

from these gradients, they show that the whole contact model is

differentiable in theory, from which we believe applications using

differentiable simulation in the future can benefit a lot.

PD. PD was originally proposed by Bouaziz et al. [2014] as

an attractive alternative to Newton’s method for solving non-

linear system dynamics with an implicit timestepping scheme.

The standard PD algorithm has been extended to support rigid

bodies [Li et al. 2019a], conserve kinetic energy [Dinev et al.

2018a, b], and support a wide range of hyperelastic materials [Liu

et al. 2017]. Furthermore, prior papers have also proposed

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:3

Table 1. Summary of Related Work

Method Domain Integration Physics-based Speed Memory Diff. Contact handling

Hu et al. [2019] Soft body (MPM) Explicit Yes Fast High Yes Solved on an Eulerian grid

Li et al. [2019b] Soft body (Particles) Network No Fast Medium Yes Trained neural-network function

Liang et al. [2019] Cloth Implicit Yes Slow Low Yes Non-penetration + impulse-based friction

Hahn et al. [2019] Soft body (FEM) Implicit Yes Slow Low Yes Soft contact + penalty energy

Geilinger et al. [2020] Multi-body Implicit Yes Slow Low Yes Penalty-based frictional contact model

Ly et al. [2020] Cloth Implicit Yes Fast Low No Signorini-Coulomb contact model

DiffPD (ours) Soft body (FEM) Implicit Yes Fast Low Yes Non-penetration contact + static friction

The “Diff.” column refers to the differentiability of each method. In each column, green indicates the preferred property; red means the method lacks the
preferred property; yellow means the method has some, but not all aspects of the preferred property.

more advanced acceleration strategies including semi-iterative

Chebyshev solvers [Wang 2015; Wang and Yang 2016], parallel

Gauss-Seidel methods with randomized graph coloring [Fratar-

cangeli et al. 2016], precomputed reduced subspace methods

for the required constraint projections [Brandt et al. 2018], and

multigrid solvers [Xian et al. 2019]. Macklin et al. [2020] introduce

a preconditioned descent-based method of PD on GPUs with

a penalty-based contact model. In DiffPD, we implement their

penalty-based contact model but leave the GPU acceleration as fu-

ture work. On the theoretical side, Narain et al. [2016] and Overby

et al. [2017] interpret PD as a special case of the alternating di-

rection method of multipliers (ADMM) from the optimization

perspective. Our work inherits the standard PD framework from

previous papers and augments it with gradient computation.

Contact handling. The topic of handling contact and friction

has been extensively studied in soft-body simulation. There exists

a diverse set of collision handling algorithms with different design

consideration: physical plausibility, time cost, and implementation

complexity, although only a few of them take differentiability

into consideration [Chen et al. 2017; Hu et al. 2019; Li et al. 2020;

Macklin et al. 2020]. In the realm of PD simulation with contact,

the most widespread strategy is to treat contact as soft constraints.

This is achieved by either directly projecting colliding vertices

onto collision surfaces at the end of each simulation step [Dinev

et al. 2018a, b; Wang 2015; Wang and Yang 2016] or imposing a fic-

titious collision energy [Bouaziz et al. 2014; Li et al. 2019a; Liu et al.

2017]. Such methods introduce an artificial stiffness coefficient,

which is task-dependent and requires careful tuning. Alterna-

tively, Ly et al. [2020] propose to combine the more physically

plausible Signorini-Coulomb contact model with PD in forward

simulation. However, using such a model creates an additional

challenge during backpropagation as solving the contact forces

requires nontrivial iterative optimizers which either fail to main-

tain differentiability or cannot exploit the prefactorized Cholesky

decomposition. In our work, we consider both penalty-based and

complementarity-based contact models. For complementarity-

based contact, we support non-penetration contact and static

friction and leave sliding friction as future work. At the core of our

contact handling algorithm is the assumption that contact occurs

on a small fraction of the full DoFs, leading to a low-rank update on

the linear system of equations. The idea of leveraging incremental,

low-rank updates during contact handling can be traced back to

ArtDefo [James and Pai 1999], which simulates soft bodies with the

boundary element methods and resets three columns in a matrix

when a new contact point becomes active. In our work, we use a

similar idea to solve contact during forward simulation and extend

it to compute gradients during backpropagation. Our work is also

relevant to the recent work on sparse Cholesky updates [Herholz

and Sorkine-Hornung 2020], which provides an alternative to our

low-rank update strategy based on Woodbury matrix identity.

Soft robot design and control. As soft-body simulation becomes

faster, more robust, and more expressive in the way of gradient in-

formation, the field of computational soft robotics is emerging as

a solution to soft robot design and control problems. One of the

earliest such simulators applied to computational robotics is Vox-

CAD [Hiller and Lipson 2014], which is not differentiable but runs

quickly on CPUs. This feature makes it well-catered to genetic al-

gorithms, leading to computer-designed soft robots that can walk,

swim, and grow [Bongard et al. 2016; Cheney et al. 2013; Corucci

et al. 2016]. More recently, Min et al. [2019] have presented an FEM

simulator which couples soft bodies with a hydrodynamical model

to enable simulation and training of swimming creatures. Like Vox-

CAD, this simulator is a gradient-free approach, meaning training

such controllers can take hours or days.

Competing with these gradient-free approaches are gradient-

based approaches, which are typically more efficient due to the

additional information provided by gradients. Sin et al. [2013] and

Allard et al. [2007] have presented fast, partially differentiable FEM

simulation that exploits modal dynamics to accelerate simulation,

at the cost of accuracy. Still, these approaches are robust enough to

allow interactive simulation of soft characters [Barbič and James

2005] and control of simulated and real robots [Thieffry et al. 2018].

More recently, similar finite-element-based simulation techniques

are shown to be effective in generating gaits for real-world foam

quadrupeds [Bern et al. 2019]. In each of these works, only control

is examined. Similar to our work, Lee et al. [2018] demonstrate

how PD can be applied to dexterous manipulation using an actu-

ation model based on the human muscular system. While their

framework is flexible and can handle soft-rigid coupling, it can

only be applied to quasi-static motions. By contrast, our simulator

handles fully dynamical systems. A competing approach, differen-

tiable MPM, is applied to soft robotics in Spielberg et al. [2019],

co-designing soft robots over closed- and open-loop control and

material distributions.

3 BACKGROUND

In this section, we review the basic concepts of the implicit

timestepping scheme and PD. Let n be the number of 3D nodes in

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:4 • T. Du et al.

a deformable body after FEM-discretization. After time discretiza-

tion, we use xi ∈ R3n and vi ∈ R3n to indicate the nodal positions

and velocities at the i-th timestep.

Implicit time integration. In this article, we focus on the implicit

time integration:

xi+1 = xi + hvi+1, (1)

vi+1 = vi + hM−1[fint(xi+1) + fext], (2)

where h is the timestep, M ∈ R3n×3n a lumped mass matrix, and

fint and fext the sum of the internal and external forces, respec-

tively. Substituting vi+1 in xi+1 gives the following nonlinear sys-

tem of equations:

1

h2
M(xi+1 − yi) − fint(xi+1) = 0, (3)

where yi = xi + hvi + h
2M−1fext is evaluated at the beginning of

each timestep. We drop the indices from x and y for simplicity:

1

h2
M(x − y) − fint(x) = 0. (4)

At each timestep, our goal is to find x satisfying the equation above

with the given y.

As pointed out by Stuart and Humphries [1996] and Martin et al.

[2011], solving x from Equation (4) is equivalent to finding the crit-

ical point of the following objective д:

д(x) =
1

2h2
(x − y)�M(x − y) + E(x), (5)

where E is the potential energy that induces the internal force:

fint = −∇E. It is easy to check the left-hand side of Equation (4)

is ∇д:

∇д(x) =
1

h2
M(x − y) + ∇E(x) =

1

h2
M(x − y) − fint(x). (6)

Equation (4) is typically solved with Newton’s method, which

iteratively solves a series of linear systems of equations. Consider

the k-th iteration in Newton’s method with xk being the guess on

x so far. Newton’s method computes the next guess on x as follows:

0 = ∇д(x) = ∇д(xk + Δx) ≈ ∇д(xk) + ∇2д(xk)Δx, (7)

∇2д(xk)Δx ≈ −∇д(xk). (8)

Therefore, one can let Δx = −[∇2д(xk)]−1∇д(xk) and update their

guess on x at the next iteration by xk+1 = xk+Δx. In practice, New-

ton’s method typically employs definiteness fixes or line searches

when ∇2д is indefinite [Nocedal and Wright 2006]. For large-

scale problems, solving Equation (8) at each xk requires expensive

linearization and matrix factorization, which becomes the time

bottleneck.

Backpropagation with implicit time integration. We sketch the

main idea of backpropagation with a loss function L defined on

x and explain how we can compute ∂L
∂y

from ∂L
∂x

. Backpropagat-

ing through multiple timesteps can be done by backpropagating

through every single pair of (x, y) from each timestep repeatedly.

As x and y are implicitly constrained by ∇д(x) = 0, we can differ-

entiate it with respect to y and obtain the following equation:

∂∇д(x)

∂x

∂x

∂y
+
∂∇д(x)

∂y
=
∂

∂y
0, (9)

∂

∂x

[
1

h2
M(x − y) + ∇E(x)

]
∂x

∂y
+
∂

∂y

[
1

h2
M(x − y)

]
= 0, (10)[

1

h2
M + ∇2E(x)

]
︸����������������︷︷����������������︸

∇2д(x)

∂x

∂y
−

1

h2
M = 0, (11)

∂x

∂y
=

1

h2
[∇2д(x)]−1M. (12)

We can solve ∂x
∂y

from it and use the chain rule to obtain the fol-

lowing (assuming both ∂L
∂x

and ∂L
∂y

are row vectors):

∂L

∂y
=
∂L

∂x

∂x

∂y
=

1

h2

∂L

∂x
[∇2д(x)]−1︸������������︷︷������������︸

z�

M. (13)

Note that the inverse of ∇2д(x) is intentionally regrouped with ∂L
∂x

to avoid the expensive [∇2д(x)]−1M. The adjoint vector z can be

solved from the following linear system of equations:

∇2д(x)z =

(
∂L

∂x

)�
. (14)

Note that we drop the transpose of ∇2д(x) because it is symmetric.

Putting them together, we have shown that backpropagation

within one timestep can be done by Equations (13) and (14). It is

now clear that ∇2д(x) plays a crucial role in both forward simu-

lation and backpropagation, and we write its definition explicitly

below:

∇2д(x) =
1

h2
M + ∇2E(x). (15)

Similar to Newton’s method in forward simulation, a direct im-

plementation of Equation (14) is computationally expensive be-

cause ∇2д(x) needs to be reconstructed and refactorized at every

timestep. This motivates us to propose the novel PD-based back-

propagation method in Section 4.

PD. PD considers a specific family of quadratic potential ener-

gies that decouple the nonlinearity in material models [Bouaziz

et al. 2014]. Specifically, PD assumes the energy E is the sum of

quadratic energies taking the following form:

Ec (x) = min
pc ∈Mc

wc

2
‖Gc x − pc ‖

2
2︸���������������︷︷���������������︸

Ẽc (x,pc)

, (16)

E(x) =
∑

c

Ec (x), (17)

where Gc is a discrete differential operator in the form of a con-

stant sparse matrix,wc a scalar that determines the stiffness of the

energy, and Mc a constraint manifold. For example, if one wants

to formulate a volume-preserving elastic energy, Mc can be the

set of all 3 × 3 matrices whose determinant is 1. Ec is defined as

the distance from Gc x to Mc . Following the prevalent practice in

previous work [Bouaziz et al. 2014; Liu et al. 2017; Min et al. 2019],

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:5

ALGORITHM 1: PD forward simulation in one timestep

Input: y;

Output: x that satisfies Equation (4);

Initialize x = y;

while x not converged do

pc = arg minpc ∈Mc
Ẽc (x, pc); // Local step;

b = 1
h2 My +

∑
c wc G�

c pc ;

x = A−1b; // Global step;

we assume Ec is defined on each finite element with Gc mapping

x to the local deformation gradients F [Sifakis and Barbic 2012].

With the definition of E at hand, PD obtains the critical point

of д by alternating between a local step and a global step, which

essentially minimizes the following surrogate objective д̃(x, p):

д̃(x, p) =
1

2h2
(x − y)�M(x − y) +

∑
c

Ẽc (x, pc), (18)

where p stacks up all pc from each Ec . The local and global steps in

PD can be interpreted as running coordinate descent optimization

on д̃. The local step fixes the current x and projects Gc x ontoMc to

obtain pc in each Ec , which can be massively parallelizable across

all Ec . The global step fixes p and minimizes д̃ over x, which turns

out to be a quadratic function with an analytical solution solved

from the following linear system of equations:(
1

h2
M +

∑
c

wc G�
c Gc

)
︸������������������������︷︷������������������������︸

A

x =
1

h2
My +

∑
c

wc G�
c pc . (19)

It is easy to see that each local and global step ensures д̃ is non-

increasing. Since д̃ is bounded below by 0, PD guarantees to con-

verge to a local minimum of д̃ satisfying the gradient condition

∇xд̃ = 0. Interestingly, Liu et al. [2017] establishes that ∇xд̃ = ∇д
upon convergence, confirming that the solution from PD is indeed

a critical point of д that solves the implicit time integration. We

summarize the local-global solver in Algorithm 1, which serves

as a basis for our contact handling algorithm to be described in

Section 5.2.

The source of efficiency in forward PD simulation lies in the fact

that A in the global step is a constant, symmetric positive definite

matrix. Therefore, the Cholesky factorization of A can be precom-

puted, after which each global step requires back-substitution only.

In the next section, we will show that we can also use A in back-

propagation to obtain significant speedup.

4 DIFFERENTIABLE PROJECTIVE DYNAMICS

We now describe our PD-based backpropagation method. Our

key observation is that the bottleneck in backpropagation lies in

the computation of ∇2д(x) in Equation (14). Following the same

idea as in forward PD simulation, we propose to decouple ∇2д(x)
into a global, constant matrix and a local, massively parallelizable

nonlinear component. To see this point, we compute ∇2E using

ALGORITHM 2: PD backpropagation in one timestep

Input: y, x (already computed in forward simulation), and ∂L
∂x

;

Output: ∂L
∂y

;

Initialize z = 0;

while z not converged do

b = ΔAz + (∂L
∂x

)�; // Local step parallelizing ΔAz;

z = A−1b; // Global step;

∂L
∂y
= 1

h2 z�M; // Equation (13);

Equations (16) and (17):

∇E(x) =
∑

c

wc G�
c (Gc x − pc), (20)

∇2E(x) =
∑

c

wc G�
c Gc −

∑
c

wc G�
c
∂pc

∂x
. (21)

Note that in Equation (20),
∂pc

∂x
can be safely ignored according to

the envelope theorem (see Appendix in Liu et al. [2017]). Accord-

ing to Equation (15), ∇2д(x) now becomes

∇2д(x) =
1

h2
M +

∑
c

wc G�
c Gc −

∑
c

wc G�
c
∂pc

∂x︸������������︷︷������������︸
ΔA

= A − ΔA. (22)

It is now clear that ΔA is the source of nonlinearity in ∇2д. The

matrix splitting of ∇2д = A − ΔA suggests the following iterative

solver for Equation (14):

Azk+1 = ΔAzk +

(
∂L

∂x

)�
, (23)

where k indicates the iteration number. Therefore, we propose a

local-global solver for Equation (14): at the k-th iteration, the lo-

cal step computes ΔAzk across all energies Ec , forming the right-

hand vector in Equation (23). In the global step, we solve zk+1 by

back-substituting A. Note that A is the same constant matrix in for-

ward PD simulation, so we can reuse the Cholesky factorization of

A. The source of efficiency in this local-global solver is similar to

what PD proposes to speed up forward simulation: essentially, this

local-global solver trades the expensive matrix assembly and fac-

torization of ∇2д in Equation (14) with iterations on a constant,

prefactorized linear system of equations. We summarize our PD

backpropagation algorithm in Algorithm 2.

Convergence rate. For any iterative algorithm design, the imme-

diate follow-up questions are whether such an algorithm is guar-

anteed to converge, and, if so, how fast the convergence rate is.

To answer these questions, we use (∂L
∂x

)� = Az − ΔAz and Equa-

tion (23) to obtain

A(zk+1 − z) = ΔA(zk − z), (24)

from which we conclude the error at the k-th iteration is ‖zk −

z‖2 = ‖(A−1ΔA)k (z0 − z)‖2. It follows that the iteration in Equa-

tion (23) is guaranteed to converge from any initial guess z0 if and

only if ρ(A−1ΔA) < 1, where ρ(·) indicates the spectral radius

of a matrix. It is challenging to provide more theoretical results

on ρ(A−1ΔA) because it depends heavily on the specific form of

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:6 • T. Du et al.

Ec , which we leave as future work. In practice, we do not observe

convergence issues with Equation (23) in any of our experiments,

which seems to imply ρ(A−1ΔA) < 1 is likely to be satisfied.

Further acceleration with Quasi-Newton methods. Inspired by Liu

et al. [2017] which apply the quasi-Newton method to speed up

forward PD simulation, we now show that a similar numerical

optimization perspective can also be applied to speed up our

proposed local-global solver in backpropagation. Solving Equa-

tion (14) equals finding the critical point of the following energy

s(z):

s(z) =
1

2
z�∇2д(x)z −

∂L

∂x
z. (25)

It is easy to verify that ∇s(z) = 0 is essentially Equation (14). We

stress that in backpropagation both ∇2д(x) and ∂L
∂x

are known val-

ues computed at x solved from forward simulation. If we apply

Newton’s method to this critical-point problem, the update rule

will be as follows (see Equations (7) and (8) in Section 3):

zk+1 = zk − [∇2s(zk)]−1∇s(zk). (26)

The true Hessian of s(z) is ∇2д(x) = A − ΔA from Equation (22).

If we approximate it with A, we get the following quasi-Newton

update rule:

zk+1 = zk − A−1∇s(zk)

= zk − A−1

[
(A − ΔA)zk −

(
∂L

∂x

)�]

= A−1ΔAzk + A−1

(
∂L

∂x

)�
,

(27)

which is identical to the iteration in Equation (23). As a result, the

local-global solver we propose can be reinterpreted as running a

simplified quasi-Newton method with a constant Hessian approxi-

mation A. By applying a full quasi-Newton method, e.g., BFGS, we

can reuse the Cholesky decomposition of A with little extra over-

head of vector products and achieve a superlinear convergence

rate [Nocedal and Wright 2006]. Moreover, similar to the previ-

ous work [Liu et al. 2017], we can apply line search techniques to

ensure convergence when ρ(A−1ΔA) ≥ 1, even though we do not

experience convergence issues in practice.

5 CONTACT HANDLING

We have described the basic framework of DiffPD in Section 4. In

this section, we propose a novel method to incorporate contact

handling and contact gradients into DiffPD. The challenges in

developing such a contact handling algorithm are twofold: first, it

must be compatible with our basic PD framework in both forward

simulation and backpropagation. Second, it must support differen-

tiability. In this section, we discuss two contact options that DiffPD

supports: an explicit, penalty-based contact model with static

and dynamic friction and an implicit, complementarity-based

contact model supporting non-penetration conditions and static

friction. Both options have their advantages and disadvantages:

the penalty-based method is more straightforward to implement

and easier to be integrated into a machine learning framework,

e.g., as an explicit neural network layer in PyTorch. However, we

find it typically requires a careful, scene-by-scene tuning of its pa-

rameters. On the other hand, our complementarity-based method

does not rely on scene-dependent parameters, but it is currently

limited to static friction only. Our penalty-based method is more

suitable for tasks that favor speed and simplicity over physical

accuracy, and the complementarity-based method is more useful

when non-penetration conditions need to be strictly enforced and

slipping motions are rare, e.g., simulating a wheeled robot.

5.1 Penalty-Based Contact

Previous papers on PD simulation typically handle contact forces

with a penalty-based soft contact model [Bouaziz et al. 2014; Dinev

et al. 2018a, b; Liu et al. 2017; Wang 2015; Wang and Yang 2016].

One common way to model contact forces is to add an additional,

fictitious energy Ec withMc being the contact surface and its exte-

rior and Gc being a matrix so that Gc x selects contact nodes from

x. This way, whenever a node penetrates the contact surface, Ec

exerts a contact force that attempts to push it back to the contact

surface. As such a contact model can be seamlessly integrated into

PD forward simulation, our backpropagation method in Section 4

naturally supports it.

Handling static and dynamic frictional forces with a penalty-

based model in PD is slightly trickier. Since friction is typically

related to nodal velocities instead of nodal positions x, it is not

straightforward to find an Ec that characterizes it. Therefore, in-

stead of modeling friction with an additional Ec , we take the

penalty-based frictional forces described in Macklin et al. [2020]

and add them directly to fext. Deriving gradients with respect to

such frictional forces is still straightforward as we can easily com-

pute ∂L
∂fext

using the chain rule as before.

5.2 Complementarity-Based Contact

An alternative to penalty-based contact is to model contact and

friction using complementarity constraints [Ly et al. 2020; Mack-

lin et al. 2020]. Complementarity-based contact models are suit-

able for applications requiring high physical fidelity but typically

require extra computational cost. Ly et al. [2020] present a gen-

eral framework for handling complementarity-based contact and

friction in PD forward simulation. More concretely, Ly et al. [2020]

model contact and friction with the Signorini-Coulomb law and fo-

cus on applications in cloth simulation. Our approach is relevant

to Ly et al. [2020] but has a substantial difference because our fo-

cus in this article is on 3D volumetric deformable bodies, which

typically have a sparse contact set, i.e., the nodes in contact during

simulation is usually a small portion of the full set of nodes. Be-

low, we will present a differentiable, complementarity-based con-

tact model that leverages such sparsity to gain speedup in both for-

ward simulation and backpropagation. Our contact model ensures

non-penetration conditions and, in exchange for speedup, handles

static friction only. We leave a differentiable, complementarity-

based dynamic friction model as future work.

Contact model. Let ϕ(·) : R3 → R be the signed-distance func-

tion of the contact surface with ϕ < 0 indicating the space occu-

pied by the obstacle. We require the solution x to the implicit time

integration to satisfy the following complementarity condition for

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:7

any node indexed by j:{
ϕ(xj) > 0, rj = 0, (28a)

or ϕ(xj) = 0, rj |N ≥ 0, (28b)

where xj and rj are 3D vectors indicating the nodal position and

contact force of node j. The notation rj |N ∈ R is the normal com-

ponent of rj where the normal is computed from the contact sur-

face ϕ at the contact location xj . In other words, for each node j,
it must be either above the contact surface (ϕ(xj) > 0) with zero

contact force (rj = 0) or in contact (ϕ(xj) = 0) with a positive con-

tact force along the normal direction (rj |N = 0). The implicit time

integration in Equation (4) now becomes⎧⎪⎪⎨⎪⎪⎩
1

h2
M(x − y) − fint(x) = r, (29a)

(x, r) satisfy Equation (28), (29b)

where the notation r stacks up all contact force rj from each

node j.

Remarks on friction. Equation (29) does not fully constrain the

solution x because, for any xj in contact with ϕ = 0, xj can slide

on ϕ = 0 and rj will compensate any force needed. This can

be resolved by imposing additional location constraints on xj .

Some common strategies include (1) in the penalty-based model

before, xj is chosen as certain projection onto ϕ = 0, (2) gluing

xj to its original position at the beginning of the timestep, and

(3) setting it to the contact point computed from collision detec-

tion [Chen et al. 2017], which is usually the intersection between

ϕ = 0 and the ray xj + tvj , 0 ≤ t ≤ h. Any of these strategies

are compatible with DiffPD as long as they can compute a target

location x∗j on ϕ = 0 if a collision detection algorithm indicates xj

is in contact with ϕ = 0. In DiffPD, we choose the third strategy

mentioned above, which essentially models a very sticky contact

surface that provides infinitely large static friction once xj is in

contact.

Time integration with contact. We first introduce some nota-

tions to better explain our solver to Equation (29). Let I =

{0, 1, 2, . . . ,n − 1} be the indices of all n nodes in the system. We

use S to denote the complement of a set S ⊆ I. In other words, S

and S is a two-set partition of I. For any subsets Sr , Sc ⊆ I, we

use ASr ×Sc
to indicate the submatrix of A created by keeping en-

tries whose row and column indices are from nodes in Sr and Sc ,

respectively. Similarly, for any vector a, we define aS as the vector

generated by keeping elements whose indices are from nodes in

S. For any vectors a and b ∈ R3 |S | , we use aS=b to indicate that a

satisfies aS = b.

The high-level idea of our time integrator with the aforemen-

tioned contact model is described in Algorithm 3, which modifies

Algorithm 1 to find x that satisfies Equation (29). We start with any

collision detection algorithm that can propose a set of candidate

contact nodes C and compute a target location x∗j for any j ∈ C.

Next, we use the proposed C to split the complementarity condi-

tion in Equation (29b) and solve Equation (29a): for any j ∈ C,

we set xj = x∗j ; for any j � C, we set rj = 0. This makes Equa-

tion (29a) a balanced system with an equal number of equations

and variables. Finally, we use the solved x to compute rj at each

j ∈ C and check if rj |N ≥ 0 is satisfied. If x results in some neg-

ative rj |N , these nodes are removed from C, and a new iteration

begins with the updated C. Similarly, if ϕ(xj) becomes negative,

such a node j is added to C. Essentially, we are running the active-

set algorithm on Equation (29a) with linear constraints, and more

advanced active set schemes can potentially be used to rebuild C

more efficiently. Using the notations above, our algorithm attempts

to solve the following reduced system at each iteration:

1

h2
M

C×C
(x − y)

C
− fint(xC=x∗)C = 0, (30)

where x∗ stacks up x∗j for all j ∈ C. Accordingly, the definition of

д is updated as follows, which we rename as дC :

дC(xC=x∗) =
1

2h2
(x − y)�

C
M

C×C
(x − y)

C
+ E(xC=x∗). (31)

It is easy to check that the left-hand side of Equation (30) is identi-

cal to ∇x
C
дC . Therefore, solving Equation (30) is equal to finding

the critical point of this modified д function, and we can still apply

Newton’s method but with a slightly different definition of ∇2д:

∇2
x
C
дC =

1

h2
M

C×C
+ (∇2E)

C×C
= (∇2д)

C×C
. (32)

In other words, ∇2
x
C
дC is a submatrix of ∇2д in Equation (15) cre-

ated by deleting rows and columns from C.

Implications on forward PD. In the PD framework, дC also in-

duces a modified surrogate function д̃, which we rename as д̃C :

д̃C(xC=x∗ , p)

=
1

2h2
(x − y)�

C
M

C×C
(x − y)

C
+

∑
c

Ẽc (xC=x∗ , pc).
(33)

It is still true that the original local-global solver will ensure д̃C
is non-increasing and converge to a critical point of дC . With the

constraint xC = x∗, the local step can project each Gc x to obtain

pc as before. The global step, on the other hand, requires some

modification, as can be best seen after computing ∇x
C
д̃C :

∇x
C
д̃C =

1

h2
M

C×C
(x − y)

C
+

∑
c

wc (G
�
c)C×I(Gc x − pc). (34)

Setting ∇x
C
д̃
C
= 0 and using the fact that xC = x∗, we obtain the

new global step with a linear system modified from Equation (19):

A
C×C

x
C
=

[
1

h2
My +

∑
c

wc G�
c (pc − Gc x

C=x∗,C=0
)

]
C

, (35)

where x
C=x∗,C=0

is a vector satisfying xC = x∗ and x
C
= 0. Al-

though the right-hand side seems complicated, it can still be par-

allelized across all Ec . It is the left-hand side matrix A
C×C

that

deserves more attention: since C is a set that changes dynamically

between each timestep, A
C×C

randomly erases different rows and

columns from A, which means the Cholesky factorization of A no

longer applies. Our key observation is that C is usually a small

subset of full nodes in 3D volumetric deformable bodies. This al-

lows us to formulate row and column deletions on A as a low-rank

update, from which we derive efficient solvers that can reuse the

Cholesky factorization of A.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:8 • T. Du et al.

ALGORITHM 3: PD forward simulation with contact

Input: y;

Output: x that satisfies Equation (29);

Run a collision detection algorithm to get C and x∗;

while C not converged do

Initialize x = y and set xC = x∗;

while x not converged do

pc = arg minpc ∈Mc
Ẽc (x, pc); // Local step;

b = 1
h2 My +

∑
c wc G�

c (pc − Gc x
C=x∗,C=0

);

// Global step;

Run Algorithm 4 to solve x
C
= (A

C×C
)−1b

C
;

r = 1
h2 M(x − y) − fint(x); // Equation (29a);

Update C based on rj , ϕ(xj), and Equation (28);

Low-rank update. Define a permutation σ on I with the follow-

ing property: σ shufflesI so that indices from C come before those

in C and the internal orders inside C and C are preserved. Define

P as the corresponding permutation matrix: Pi j = 1 if σ (i) = j
and 0 otherwise. Now AP shuffles all columns of A so that the i-
th column in A becomes the σ (i)-th column in AP. Similarly, P�A

shuffles all rows of A in the same way. We now rewrite P�AP as a

2 × 2 block matrix:

P�AP =

(
AC×C A

C×C
A
C×C

A
C×C

)
. (36)

Let c = |C| and define U ∈ R3n×2c as follows:

U =
(
UL UR

)
=

(
I 0

0 A
C×C

)
, (37)

where UL ,UR ∈ R3n×c represent the left and right halves of U

and I the identity matrix of a proper size. Similarly, we define V ∈

R2c×3n as follows:

V =

(
U�

R
U�

L

)
=

(
0 A

C×C
I 0

)
. (38)

It is now easy to verify that the product of UV is the following

low-rank matrix:

UV =

(
0 A

C×C
A
C×C

0

)
, (39)

and subtracting it from P�AP results in a block-diagonal matrix:

P�AP − UV = P� (A − PUVP�)︸�����������︷︷�����������︸
AP

P =

(
AC×C 0

0 A
C×C

)
. (40)

Therefore, we can obtain (A
C×C

)−1 by inverting P�AP−UV. Since

inverting P is trivial (P−1 = P�), we focus on computing A−1
P

using

the Woodbury matrix identity:

A−1
P = A−1 + A−1PU(I − VP�A−1PU)−1VP�A−1. (41)

Since A is prefactorized, operations using A−1 in the matrix iden-

tity above can be executed efficiently. Moreover, with the assump-

tion that c � n, I − VP�A−1PU ∈ R2c×2c is a small matrix com-

pared to A, and inverting it (solving a linear system whose left-

hand side is this matrix) can be done efficiently. Putting everything

together, we transform the problem of factorizing AP into factor-

izing a much smaller linear system of equations.

Time complexity. We now consider a brute-force implementa-

tion of Equation (41) and analyze its time complexity. The time

cost is dominated by computing A−1PU which takes O(n2c) time.

While this is still asymptotically smaller than the cost of factor-

izing the modified matrix, which generally takes O(n3) time, the

speedup in practice may not be as much as predicted due to the

sparsity of AP. Therefore, further simplification on Equation (41)

would still be desirable.

Further acceleration. To reduce the time cost of computing

A−1PU, we notice that PU shuffles all rows of U with the inverse

mapping σ−1. As a result, PUL , the left part of PU, is effectively

II×C , i.e., a collection of one-hot column vectors ej , j ∈ C, where

the j-th entry in ej is 1. This means that we can precompute

A−1II×C using a maximum possible C (e.g., all surface nodes) be-

fore the whole simulation begins and look up A−1ej , j ∈ C on the

fly.

It turns out that the same idea can also be used for computing

A−1PUR , the right half of the solution, with a slight modification.

Notice that PUR can be obtained from A by fetching AI×C and

zeroing out corresponding rows in C:

PUR = AI×C − II×CAC×C . (42)

We can, therefore, compute A−1PUR as follows:

A−1PUR = A−1AI×C − A−1II×CAC×C

= II×C − A−1II×CAC×C .
(43)

Since A−1II×C has been precomputed, the time complexity will

be bounded by the matrix multiplication O(nc2). Moreover, noting

that A−1 is symmetric and V can be obtained from U by swapping

and transposing block matrices UL and UR , the results derived here

can also be reused to assemble VP�A−1.

In conclusion, we have reduced the time complexity of com-

puting A−1PU from O(n2c) to O(nc2). Since the remaining oper-

ations, excluding solving A−1 in Equation (41), are also bounded

by O(nc2), we now have reduced the overhead of applying Equa-

tion (41) from O(n2c) to O(nc2), with the overhead defined as the

extra cost brought by Equation (41) in addition to one linear solve

A−1 with any right-hand side vector. We present the complete algo-

rithm in pseudocode in Algorithm 4, which serves as a subroutine

in Algorithm 3. We use Bk and ak to denote intermediate matrices

and vectors, respectively, with the subscript k indicating the order

of their first occurrence.

Backpropagation. With a contact set C and the corresponding

x∗, the backpropagation scheme in Section 4 also needs modifica-

tions. Backpropagating from ∂L
∂x

to ∂L
∂y

now becomes trickier due

to the existence of C and x∗ from a collision detection algorithm,

which splits both x and y into two vectors xC , x
C

, yC , and y
C

.

Here, we will sketch the core idea by showing how gradients can be

backpropagated from ∂L
∂x

C
to ∂L

y
C

. Backpropagation through other

dependencies is easier to derive and therefore skipped.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:9

ALGORITHM 4: Global step in Algorithm 3.

Input: C ⊆ I, x∗ ∈ R3 |C | , and b ∈ R3n ;

Output: x such that xC = x∗ and A
C×C

x
C
= b

C
;

Collect B1 = A−1II×C from precomputed data;

B2 = II×C − B1AC×C ;

B3 = (B1,B2); // B3 = A−1PU;

// VP� can be fetched from A without permutation;

// No need to compute P;

B4 = I − VP�B3;

Solve a1 from Aa1 = b;

a2 = (b�B2, b
�B1); // Row vector;

Solve a3 from B4a3 = a�2 ;

x = a1 + B3a3;

Set xC = x∗;

From Equations (30) and (31), we see that x
C

and y
C

are con-

strained by ∇x
C
дC = 0. By differentiating Equation (30), we obtain

∇2
x
C
дC
∂x

C

∂y
C

−
1

h2
M

C×C
= 0, (44)

which is a reduced version of Equation (9). The chain rule still ap-

plies in a similar way:

∂L

∂y
C

=
∂L

∂x
C

∂x
C

∂y
C

=
1

h2

∂L

∂x
C

[(∇2д)
C×C

]−1

︸������������������︷︷������������������︸
z�

M
C×C
, (45)

where a new adjoint vector z is defined. It should now become

very clear that z is obtained from the following linear system of

equations:

(∇2д)
C×C

z =

(
∂L

∂x
C

)�
. (46)

Now using Equation (22), we see the iterative solver in Section 4

becomes

A
C×C

zk+1 = ΔA
C×C

zk +

(
∂L

∂x
C

)�
, (47)

from which we see a similar issue we experience in forward simu-

lation: A
C×C

changes dynamically, so the Cholesky factorization

of A is not directly applicable. This is exactly where we can use

the same global solver in Algorithm 4 to retain the source of effi-

ciency in our PD backpropagation algorithm. We summarize this

new backpropagation method in Algorithm 5.

Summary. In summary, we have presented a differentiable con-

tact handling algorithm that ensures non-penetration conditions

and imposes infinitely large static friction. Moreover, we have also

discussed its implementation in forward simulation and backprop-

agation that can still benefit from the Cholesky factorization of A.

We stress that there exist more physically accurate contact han-

dling algorithms that satisfy not only non-penetration conditions

but also the Coulomb’s law of friction [Chen et al. 2017; Li et al.

2020; Ly et al. 2020]. However, our contact handling algorithm

ALGORITHM 5: PD backpropagation with contact

Input: y, x, and C (from forward simulation), and ∂L
∂x

C
;

Output: ∂L
∂y

C
;

Initialize z = 0;

while z not converged do

b = (ΔA)
C×C

z + (∂L
∂x

C
)�; // Local step;

Run Algorithm 4 to solve z = (A
C×C

)−1b; // Global

step;

∂L
∂y

C
= 1

h2 z�M
C×C

; // Equation (13);

achieves a good tradeoff between differentiability, physical plau-

sibility, and compatibility with our differentiable PD framework.

6 EVALUATION

In this section, we compare DiffPD with a few baseline differen-

tiable simulation methods and conduct ablation studies on the ac-

celeration techniques in Section 4 and Section 5. We start by dis-

cussing the difference between implicit and explicit timestepping

schemes in backpropagation. Next, we compare our simulator with

two other fully implicit simulators implemented with the New-

ton’s method. We end this section with a discussion on the two

contact models implemented in DiffPD. The end goal of this sec-

tion is to evaluate the difference between different timestepping

methods and understand the source of efficiency in DiffPD. We

implement both baseline algorithms and DiffPD in C++ and use

Eigen [Guennebaud et al. 2010] for sparse matrix factorization and

linear solvers. We run all experiments in this section and the next

section on a virtual machine instance from Google Cloud Platform

with 16 Intel Xeon Scalable Processors (Cascade Lake) @ 3.1 GHz

and 64 GB memory. We use OpenMP for parallel computing and

eight threads by default unless otherwise specified.

6.1 Comparisons with Explicit Method

Compared with explicit timestepping methods used in previous pa-

pers on differentiable simulation [Hu et al. 2020, 2019; Spielberg

et al. 2019], implicit time integration brings two important changes

to a differentiable simulator: first, implicit methods enable a much

larger timestep during simulation, resulting in much fewer num-

ber of frames. This is particularly beneficial for solving an inverse

problem with a long time horizon as we store fewer states (nodal

positions and velocities) in memory during backpropagation. Sec-

ond, due to implicit damping, we can expect the landscape of the

loss function defined on nodal states and their derived quantities

to be smoother.

To demonstrate the memory consumption, we consider a soft

cantilever discretized into 12 × 3 × 3 hexahedral elements (a

low-resolution version of the “Cantilever” example in Figure 1,

left). We impose Dirichlet boundary conditions on one end of the

cantilever and simulate its vibration after twisting the other end

of the cantilever under gravity for 0.2 seconds. We define a loss

function L as a randomly generated weighted average of the final

nodal positions and velocities. The implicit time integration in our

simulator allows us to use a timestep as large as 10 milliseconds,

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:10 • T. Du et al.

Fig. 1. The “Cantilever” and “Rolling sphere” examples in Section 6 designed for comparing DiffPD to the Newton’s method. The “Cantilever” example

starts with a twisted cantilever (left), oscillates, and bends downwards eventually due to gravity. In the “Rolling sphere” example, we roll a soft sphere on

the ground (right) which constantly breaks and reestablishes contact.

Fig. 2. The relative changes in both the loss (top left) and the magnitude

of the gradient (bottom left) for the explicit method (cyan) and our method

(green) for 5 out of the 16 random directions in the neighborhood of the

initial nodal positions x0. Also shown are the means (solid curves) and

standard deviations (shaded) of the percent change in loss (top right) and

the magnitude of the gradient (bottom right) for all 16 random directions.

while an explicit implementation is only numerically stable in

both forward simulation and backpropagation for timesteps of 0.5

milliseconds. Since memory consumption during backpropagation

is proportional to the number of frames, we can expect a 20×

increase in memory consumption for the explicit method, requir-

ing additional techniques like checkpoint states [Hu et al. 2019;

Spielberg et al. 2019] before the problem size can be scaled up.

To demonstrate the influences of timestepping schemes on the

smoothness of the energy landscape, we visualize in Figure 2 the

loss function L and its gradient norm |∇L| sliced along 16 random

directions in the neighborhood of the cantilever’s initial nodal po-

sitions. Specifically, let x0 be the initial nodal positions, and let

r1, r2, . . . , r16 be the random directions. We plot L(x0 + αri) and

|∇L(x0 + αri)| for each ri (Figure 2, left) with α being the step

size, which is uniformly sampled between −0.3% and 0.3% of the

cantilever beam length. The standard deviations from 16 random

directions (Figure 2, right) indicate that small perturbations in x0

lead to much smoother loss and gradients when implicit time inte-

gration is applied, which is not surprising due to numerical damp-

ing. From the perspective of differentiable simulation, a smoother

energy landscape can be more favorable as it induces more

well-defined gradients to be used by gradient-based optimization

techniques.

6.2 Comparisons with Other Implicit Methods

We now compare our simulator with other implicit timestepping

schemes to evaluate its speedup in both forward and backward

modes. We choose Newton’s method with two standard sparse lin-

ear solvers: an iterative solver using preconditioned conjugate gra-

dient (Newton-PCG) and a direct solver using Cholesky decompo-

sition (Newton-Cholesky), as our baseline solvers for implicit time

integration in Equation (3). First, we compare with the Newton’s

method in Section 4 without contact. Then, we benchmark the per-

formance of the contact handling algorithm in Section 5. We reit-

erate that just like in the standard PD framework, any resultant

speedup from DiffPD over Newton’s method is under the assump-

tion that the material model has a quadratic energy function. We

extend our discussion to general hyperelastic materials at the end

of the article and leave it as future work.

Simulation without contact. We benchmark our method,

Newton-PCG, and Newton-Cholesky using a cantilever with

32 × 8 × 8 elements, 8019 DoFs, and 243 Dirichlet boundary

constraints (“Cantilever” in Figure 1 and Table 3). The example

runs for 25 frames with timesteps of 10 milliseconds. We define

the loss L as a randomly generated weighted sum of the final

nodal positions and velocities.

In terms of the running-time comparison, we report results in

Figure 3 from running all three methods with two, four, and eight

threads and a range of convergence threshold (from 1e-1 to 1e-7)

on the relative error in solving Equation (3). The speedup from

parallel computing is less evident in the Newton’s method be-

cause the majority of their computation time is spent on matrix

refactorization—a process that cannot be trivially parallelized in

Eigen. We conclude that our simulator has a clear advantage over

Newton’s method on the time cost of both forward simulation and

backpropagation. For forward simulation, the speedup is well un-

derstood and discussed in many previous PD papers [Bouaziz et al.

2014; Liu et al. 2017]. For moderate tolerances (1e-3 to 1e-5), we

observe a speedup of 9–16 times in forward simulation with eight

threads and note that it becomes less significant as precision in-

creases. Both of these observations agree with previous work on

PD for forward simulation. In backpropagation, DiffPD method

is 6–13 times faster than the Newton’s method for moderate tol-

erances due to the reuse of the Cholesky decomposition and the

quasi-Newton update. Specifically, we point out that without the

proposed acceleration technique with quasi-Newton methods in

Section 4, PD backpropagation is faster than the Newton’s method

only for very low precision (orange in Figure 3, right), confirming

the necessity of the quasi-Newton updates.

Since PD is an iterative method whose result is dependent on the

convergence threshold, it is necessary to justify which threshold

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:11

Fig. 3. Top: the net wall-clock times (left), forward times (middle), and

backpropagation times (right) for different convergence thresholds tested

on the “Cantilever” example in Section 6.2. The results are obtained from

simulating this example using each of the three methods: Newton-PCG

(PCG), Newton-Cholesky (Cholesky), and DiffPD (Ours). The number fol-

lowing the method name denotes the number of threads used. Also shown

are the results from running our method without applying the quasi-

Newton method (orange, right). Bottom: the loss (left) and magnitude of

the gradient of the loss (right) for different convergence thresholds used

to terminate iterations in Newton’s method and our simulator.

is the most proper. To analyze the influence of the choice of thresh-

olds, we use results from Newton-Cholesky as the oracle because

it is a direct solver whose solution is computed with the machine

precision in Eigen. We then compare both our method and Newton-

PCG with the oracle by computing the loss and gradients of the

“Cantilever” example with varying convergence thresholds and

analyze when the results from the three methods start to coincide.

This comparison provides quantitative guidance on the choice of

convergence threshold and reveals the range in which our method

can be a reliable alternative to the Newton’s method in optimiza-

tion tasks. We report our findings in Figure 3. As Newton-PCG and

our method are iterative methods, their accuracy improves when

the convergence threshold becomes tighter. It can be seen from the

figure that our method agrees with the Newton’s method on the

numerical losses and gradients when using a threshold as large as

1e-4. Therefore, we use 1e-4 as our default threshold in all applica-

tions to be discussed below unless otherwise specified. Referring

back to Figure 3, using eight threads and with a convergence

threshold of 1e-4, our method achieves significant speedup (12–16

times faster in forward simulation and 6.5–9 times faster in back-

propagation) compared with Newton-PCG and Newton-Cholesky.

Simulation with contact. To create a benchmark scene that re-

quires contact handling constantly, we roll a soft sphere on a hori-

Fig. 4. Top: the net wall-clock times (left), forward times (middle), and

backpropagation times (right) for different convergence thresholds tested

on the “Rolling sphere” example for contact handling. The results are

obtained from three methods: Newton-PCG (PCG), Newton-Cholesky

(Cholesky), and DiffPD (Ours). The number following the method name de-

notes the number of threads used. Also shown are the results from running

our method without applying the further acceleration technique (Alg. 4) in

Section 5.2 (orange). Bottom: the loss (left) and magnitude of the gradient

of the loss (right) for different convergence thresholds used to terminate

iterations in the Newton’s method and our simulator.

zontal collision plane for 100 frames with a timestep of 5 millisec-

onds (“Rolling sphere” in Figure 1 and Table 3). The sphere is vox-

elized into 552 elements with 2,469 DoFs, and the maximum possi-

ble contact set C we consider consists of 72 nodes (216 DoFs) on the

surface of the sphere. Similar to the “Cantilever” example, we de-

fine the loss function L as a randomly generated weighted average

of the final nodal positions and velocities. We implement the con-

tact handling algorithm in Section 5.2 with Newton-PCG, Newton-

Cholesky, and our method, and we report their time cost as well

as their loss and gradients in Figure 4. It can be seen from Figure 4

that the results from three methods start to converge when the

convergence threshold reaches 1e-6, with which our method is

10 times faster than the Newton’s method in both forward and

backward mode (Figure 4). Such speedup mainly comes from the

low-rank update algorithm (Algorithm 4) which avoids the expen-

sive matrix factorization from scratch. Additionally, by comparing

the orange and green curves in Figure 4, we conclude that the

acceleration technique of caching A−1II×C further speeds up

DiffPD by 25% in forward mode and 44% in backward mode when

measured with eight threads and a convergence threshold of 1e-6.

6.3 Ablation Study

We end this section with an ablation study on multiple compo-

nents in our algorithm. We start with an empirical analysis on the

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:12 • T. Du et al.

iterative solver and the line search algorithm in our backpropa-

gation algorithm (Section 4), followed by an evaluation on the

penalty-based and the complementarity-based contact models.

Spectral radius and line search. One key assumption we have

made in our backpropagation solver is that the spectral radius of

ρ(A−1ΔA) < 1, which is also one of the primary reasons why we

have employed the line search algorithm as a safeguard when the

assumption does not hold. Here, we use the “Cantilever” example

check if this assumption holds empirically. We explicitly calculate

ρ(A−1ΔA) we experience in “Cantilever” and observe a maximum

value of 0.996, indicating that we can expect convergence in the

iterative solver, which we further confirm by testing the iterative

solver with 100 randomly generated, artificial right-hand side

vector ∂L
∂x

. We observe similar results about the convergence of

the backpropagation solver in the “Rolling sphere” example as

well as in our applications to be described in Section 7, indicating

that it seems safe to expect the iterative solver to converge in

practice despite the lack of a theoretical guarantee on it.

As employing line searches in our algorithm serves as a safe-

guard to cases when ρ(A−1ΔA) > 1, an implication from the obser-

vations on the spectral radius is that we rarely trigger line searches

to reduce the step size in practice. In fact, in this “Cantilever” exam-

ple, and in almost all applications below, we notice that the default

step size (1 in the Newton’s and quasi-Newton methods) almost

always allows us to skip the line search stage. Still, we precaution-

arily set the maximum number of line search iterations to be 10 for

all examples.

Penalty-based contact. We implement the penalty-based contact

and frictional forces from Macklin et al. [2020] in DiffPD and ana-

lyze them in both forward simulation and backpropagation. First,

we use a standard “Slope” test with varying frictional coefficients

in the penalty-based model to understand the expressiveness of

this contact model in forward simulation. Second, we use a “Duck”

example which optimizes frictional coefficients using the gradients

of this contact model in backpropagation.

To show the capacity of the penalty-based contact model in for-

ward simulation, we consider the “Slope” test visualized in Figure 5.

We place a squishy rubber duck (16,776 DoFs and 24,875 tetrahe-

drons) on four slopes with varying frictional coefficients from the

penalty form in Macklin et al. [2020] and let it slide for 2 seconds

under gravity. We can see from the figure that with decreasing slid-

ing friction from the left slope to the right slope, the implementa-

tion of Macklin et al. [2020] in DiffPD generates different sliding

distances that match our expectation qualitatively.

Backpropagating a penalty-based contact model is straightfor-

ward because it only requires a procedural application of chain

rules to differentiate the penalty energy. To show the penalty-

based model is fully compatible with DiffPD’s backpropagation

and can be useful in optimization problems, we design a “Duck”

example (Figure 6) with the same rubber duck but on a curved

slide with frictional coefficients to be optimized (three DoFs in to-

tal). The duck slides off the curved surface and aims to land on a

target location (indicated by the white circle). The frictional coef-

ficients affect the stickiness of the curve surface and control the

exiting velocity of the duck when it leaves the slide, which further

Fig. 5. Slope. A rubber duck (16,776 DoFs and 24,875 tetrahedrons) slides

on slopes with varying frictional coefficients implemented in DiffPD using

a penalty-based contact and friction model [Macklin et al. 2020]. Left: the

initial position of the duck. Middle left to right: the final positions of the

duck after 2 seconds with a decreasing frictional coefficient.

Fig. 6. Duck. The same rubber duck in Figure 5 now slides on a curved

surface with trainable frictional coefficients. The goal in this test is to op-

timize the frictional coefficients so that the duck’s final position after 1

second of simulation reaches the center of the white circle as closely as

possible. We overlay the intermediate positions of the rubber duck at 0 s,

0.25 s, 0.5 s, 0.75 s, and 1 s in simulation with an initial guess of the fric-

tional coefficients before optimization (left) and the final coefficients after

gradient-based optimization (right).

determines its movement under gravity afterwards. From the two

motion sequences in Figure 6 before and after gradient-based op-

timization, we observe a substantial improvement that eventually

leads the duck to the target position. This confirms the usefulness

of gradients computed in DiffPD using the penalty-based contact

method.

Complementarity-based contact. For the contact model de-

scribed in the complementarity form, our backpropagation algo-

rithm assumes the contact set is a small subset of full DoFs. Specif-

ically, Algorithm 4 requires a relatively small size of C at each

timestep to gain substantial speedup over directly solving the mod-

ified linear system without leveraging the low-rank update. Given

that C is a subset of surface vertices, whose number is much fewer

than the number of interior vertices in a typical 3D volumetric de-

formable body, such an assumption can be easily satisfied in many

applications. Indeed, in the next section, we will present various

3D examples involving contact, none of which have more than 6%

active contact nodes throughout simulation.

The assumption that |C| is relatively small is much more likely

to be violated when we simulate a co-dimensional object, e.g., a

one-dimensional rope or a piece of cloth in 3D, in which case it

is entirely possible to have all nodes in C at some point. Although

simulating co-dimensional objects is beyond the scope of this work,

it can be a good test to reveal a critical ratio where the speedup

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:13

Fig. 7. Ablation study on the relative size of the active contact set |C | and

its influence on DiffPD’s speed. We simulate a one-layer “Napkin” with

resolutions from 25 × 25 × 1 voxels (middle row) to 100 × 100 × 1 voxels

(bottom row) falling onto a spherical obstacle (blue, top row) with a varying

solid angle. We report the relative size of |C | and the degrees of freedom

of the napkin. Please refer to Table 2 for the detailed running time and our

video for the full motion of the falling napkin.

from Algorithm 4 starts to diminish. To mimic a co-dimensional ob-

ject, we engineer a “Napkin” example consisting of one-layer vox-

els (Figure 7) falling onto a spherical obstacle with an adjustable

solid angle to control the size of |C|. The relative size of |C| is

capped by 50% when all the bottom nodes are in contact with the

spherical obstacle (Figure 7, right column). We vary the mesh res-

olution from 25× 25× 1 voxels (4,056 DoFs) to 100× 100× 1 voxels

(61,206 DoFs) and report the running time of Newton’s method and

DiffPD in Table 2 for each resolution and contact set size. We can

use Table 2 to decide between using our low-rank update method

and directly solving the modified matrix in a downstream appli-

cation. For example, for around 15k DoFs, Table 2 suggests that

the low-rank update method is faster until the relative size of C

reaches around 40%.

7 APPLICATIONS

In this section, we show various tasks that can benefit from

DiffPD and classify them into five categories: system identification,

inverse design, trajectory optimization, closed-loop control, and

real-to-sim applications. Although prior efforts on differentiable

simulators have demonstrated their capabilities on almost all these

examples, we highlight that DiffPD is able to achieve comparable

results but reduce the time cost by almost an order of magnitude.

We provide a summary of each example in Table 3. For examples

with actuators, we implement the contractile fiber model as dis-

cussed in Min et al. [2019]. Regarding the optimization algorithm,

we use L-BFGS in our examples by default unless otherwise spec-

ified. We report the time cost and the final loss after optimization

in Table 4. For fair comparisons, we use the same initial guess and

termination conditions when running L-BFGS with different sim-

ulation methods. When reporting the loss in Table 4, we linearly

normalize it so that a loss of 1 represents the average performance

Table 2. Average Running Time Per Step in the Napkin Example

With Various Mesh Resolution

Res. Method 6% 24% 38% 50%

25 × 25 × 1 Newton-PCG 0.8 1.6 1.6 1.5

(4,056 DoFs) DiffPD 0.1 0.6 1.2 1.4

50 × 50 × 1 Newton-PCG 5.4 8.4 10.2 8.5

(15,606 DoFs) DiffPD 1.2 6.0 11.3 10.5

75 × 75 × 1 Newton-PCG 14.7 25.1 25.2 22.5

(34,656 DoFs) DiffPD 7.1 29.0 42.8 48.1

100 × 100 × 1 Newton-PCG 44.6 65.0 47.3 48.5

(61,206 DoFs) DiffPD 32.0 169.8 158.7 163.4

(“res”) and relative contact set size from 6% to 50% (Figure 7, top row). The
reported time is averaged over all steps when the napkin is in contact
with the obstacle. All times are in seconds. For each mesh resolution and
each relative contact set, we report the running time from both the
Newton’s method and DiffPD with the shorter time in bold.

Fig. 8. System identification. Motion sequences of the “Plant” example

sampled at the 1st, 100th, 150th, and 200th (final) frames (left to right). We

generated three motion sequences with a random initial guess of the ma-

terial parameters (top row), optimized material parameters (middle row),

and the ground truth (bottom row). The colored boxes highlight the motion

differences before and after optimization. The goal is to optimize the mate-

rial parameters so that the motion of the plant matches the ground truth.

from 16 randomly sampled solutions and a loss of 0 maps to a de-

sired solution. For examples using a bounded loss, we map zero

loss to an oracle solution that achieves the lower bound of the loss

(typically 0). For unbounded losses used in the walking and swim-

ming robots (Sections 7.3 and 7.4), we map zero loss to the per-

formance of solutions obtained from DiffPD. The full details about

each experiment can be found in our Supplemental Material and

our source code.

7.1 System Identification

In this section, we discuss two examples that aim to estimate the

material parameters (Young’s modulus and Poisson’s ratio) from

dynamic motions of soft bodies: the “Plant” example estimates ma-

terial parameters from its vibrations, and the “Bouncing ball” ex-

ample predicts its parameters from its interaction with the ground.

We generate the ground truth using our forward PD simulator with

a set of predefined material parameters.

Plant. We first initialize an elastic, 3D house plant model with

3, 863 hexahedral elements and 29, 763 DoFs (Figure 8). We impose

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:14 • T. Du et al.

Table 3. The Setup of All Examples in the Article

Sec. Task name # of elements # of DoFs h (ms) # of steps Gravity Dirichlet Contact Hydrodynamics Actuation

6.2
Cantilever 2,048 8,019 10 25 � � �
Rolling sphere 552 2,469 5 100 � �

7.1
Plant 3,863 29,763 10 200 �
Bouncing ball 1,288 9,132 4 125 � �

7.2
Bunny 1,601 7,062 1 100 � �
Routing tendon 512 2,475 10 100 � � �

7.3

Torus 568 3,204 4 400 � � �
Quadruped 648 3,180 10 100 � � �
Cow 475 2,488 1 600 � � �

7.4
Starfish 1,492 7,026 33.3 200 � �
Shark 2,256 9,921 33.3 200 � �

7.5 Tennis balls 640 978 5.6 150 � �

The right five columns report whether the example has gravity as an external force, imposes Dirichlet boundary conditions on nodal positions, handles contact,
requires hydrodynamical forces, and has actuators.

Table 4. The Performance of DiffPD on All Examples

Sec. Task name
Newton-PCG Newton-Cholesky DiffPD (Ours)

Fwd. Back. Eval. Loss Fwd. Back. Eval. Loss Fwd. Back. Eval. Loss Speedup

6.2
Cantilever 118.2 39.4 - - 160.1 55.9 - - 10.5 5.5 - - 10×

Rolling sphere 107.3 31.3 - - 135.6 36.6 - - 14.0 5.7 - - 8×

7.1
Plant 1,089.5 530.5 10 1.9e-3 929.6 525.2 10 1.9e-3 71.6 94.7 28 5.9e-7 9×

Bouncing ball 269.3 90.9 43 7.9e-2 262.6 102.5 22 8.4e-2 15.8 14.2 12 9.6e-2 12×

7.2
Bunny 277.7 88.0 21 7.0e-3 358.2 126.9 29 5.1e-3 24.0 17.3 11 2.3e-2 9×

Routing tendon 108.2 56.7 36 6.0e-4 107.3 58.7 38 4.9e-4 8.3 9.9 30 9.6e-4 9×

7.3

Torus 751.9 210.3 47 −2.3e-3 719.9 212.4 43 −2.4e-2 84.3 81.9 27 0 6×

Quadruped 289.2 51.5 69 −1.8e0 246.3 47.8 54 -1.1e0 50.2 15.8 30 0 4×

Cow 771.7 141.7 14 9.7e-1 620.1 140.2 20 9.8e-1 105.3 43.7 31 0 5×

7.4
Starfish 217.7 105.1 100 4.8e-1 244.0 129.4 100 1.4e-1 5.7 10.8 100 0 19×

Shark 260.7 159.3 100 9.8e-1 599.4 241.8 100 −9.0e-3 35.5 15.3 100 0 8×

7.5 Tennis balls 54.6 6.4 14 7.2e-2 26.8 5.8 12 7.2e-2 24.1 15.9 41 6.9e-2 0.8×

For each method and each example, we report the time cost of evaluating the loss function once (Fwd.) and its gradients once (Back.) in the unit of seconds. Also
shown are the number of evaluations of the loss and its gradients (Eval.) in BFGS optimization. The “Loss” column reported the normalized final loss after
optimization (lower is better) with the best one in bold. Finally, we report the speedup computed as the ratio between the forward plus backward time of the
Newton’s method and of DiffPD, i.e., ratio between the sum of “Fwd.” and “Back.” columns. Note that no speedup is gained from DiffPD in the real-to-sim example
“Tennis balls” because of its too small number of DoFs (Table 3).

Dirichlet boundary conditions at the root of the plant such that

it is fixed to the ground. We apply an initial horizontal force at

the start of simulation, causing the plant to oscillate. Starting from

an initial guess using randomly picked material parameters, we

deform a new plant in the same manner as the ground truth and

optimize the logarithm of the Young’s modulus and Poisson’s ratio

of the new plant to match that of the ground truth plant. The loss at

each timestep is determined as the squared sum of the elementwise

difference in positions between the new plant and the reference

plant.

After optimization, DiffPD, Newton-PCG, and Newton-

Cholesky converge to local minima with a final Young’s modulus

of 1.00 MPa, 0.96 MPa, and 0.96 MPa, respectively. Regarding

the Poisson’s ratio, DiffPD converge to 0.4 while both Newton’s

methods converged to 0.44. The reference plant is initialized

with a Young’s modulus of 1 MPa and a Poisson’s ratio of 0.4.

While the three methods all reach solutions that are similar to

the ground truth, the optimization process is highly expedited by

a factor of 9 for loss and gradient evaluation using our method

(Table 4). We observe that DiffPD converged to a solution closer

to the ground truth but used more function evaluations due to the

numerical difference between DiffPD and the Newton’s method.

However, if DiffPD terminated after the same number of function

evaluations (10) as the Newton’s method, the optimized Young’s

modulus and Poisson’s ratio would be almost identical to results

from the Newton’s method (0.97 MPa for Young’s modulus and

0.44 for Poisson’s ratio), implying the 9× speedup indeed comes

from DiffPD’s improvements over the Newton’s method on the

simulation side.

Bouncing ball. In this example, we consider a ball with 1,288

hexahedral elements and 9,132 DoFs thrown at the ground from

a known initial position (Figure 9). The ball has three cylindrical

holes extruded through the faces in order to produce more complex

deformation behavior than a fully solid ball. This example uses

the complementarity-based contact model in Section 5.2. We can

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:15

Fig. 9. System identification. Motion sequences of the “Bouncing ball”

example sampled at the 1st frame (left), the 19th frame when collision

occurs (middle), and the 125th (final) frame (right). We generated three

motion sequences with a random initial guess of the material parameters

(top row), optimized material parameters (middle row), and the ground

truth (bottom row). The goal is to optimize the material parameters so

that the motion of the ball matches the ground truth.

estimate the material parameters of a bouncing ball by observing

its behavior after it collides with the ground. The loss definition

is the same as in the parameter estimation of the “Plant” example.

Regarding the optimization process, all three methods converge

to a Young’s modulus of 1.78 MPa and Poisson’s ratio of 0.2. The

ground truth values for the Young’s modulus and Poisson’s ratio

are 2 MPa and 0.4, respectively. While the optimized material pa-

rameters are significantly different from the ground truth values,

the motion sequences are very similar as reflected by the final loss

in Table 4 and Figure 9. Since the loss function is defined on the

motion only, there could exist many material parameters that re-

sult in close-to-zero loss. As in the “Plant” example, our method

enjoys a substantial speedup (12×) in computation time even with

collisions in simulation.

7.2 Initial State Optimization

We present two examples demonstrating the power of using gradi-

ent information to optimize the initial configuration of a soft-body

task. In the “Bunny” example, we optimize the initial position and

velocity of a soft Stanford bunny so that its bounce trajectory ends

at a target position. In the “Routing tendon” example, we optimize

a constant actuation signal applied to each muscle in a soft cuboid

with one face sticky on the ground so that the corner at the oppo-

site face reaches a target point at the end of simulation.

Bunny. For this example, we optimize the initial pose and veloc-

ity of a Stanford bunny (1,601 elements and 7,062 DoFs) so that

its center of mass (red dots in Figure 10) reaches a target position

(blue dot in Figure 10) when the simulation finishes. This example

uses the complementarity-based contact model, and we add 251

surface vertices (753 DoFs) to the set of possible contact nodes—

approximately 10.7% of the 2,354 vertices. Figure 10 illustrates the

trajectory of the bunny before and after optimization: the initial

guess generates a trajectory almost to the opposite direction of the

target, and the optimized trajectory ends much closer to the target.

Fig. 10. Inverse design. Initial (left) and optimized (right) trajectories of

the “Bunny” example. The red dots indicate the location of the center of

mass of the bunny, and the blue dot is the target location. The goal is to

adjust the initial position, velocity, and orientation of the bunny so that

its final center of mass can reach the target location.

Note that none of the three methods solve this task perfectly: the

trajectory does not reach the target even after optimization. This is

because the target is chosen arbitrarily rather than generated from

simulating a ground truth bounce trajectory, so it is not guaranteed

to be reachable. Table 4 shows that the final loss from DiffPD is

larger than from the Newton’s method, but the increase in perfor-

mance makes up for it. Using eight threads, our method achieves a

speedup of nine times overall with a large set of potential contact

points.

Routing tendon. We initialize a soft cuboid with 512 elements

and 2,475 DoFs and impose Dirichlet boundary conditions such

that its bottom face is stuck to the ground. We also add actuators

to each element and group them into 16 muscle groups. The level

of actuator activation is a scalar between 0 and 1, indicating mus-

cle contraction and expansion, respectively. The elements within

a specific actuation group all share the same, time-invariant actu-

ation signal to be optimized in order to manipulate the endpoint

(red dot in Figure 11) of the soft body to reach a target point (blue

dot in Figure 11). The normalized losses at the final iteration for

each of the methods (Table 4) are all close to zero, indicating that

the task is solved almost perfectly. Using DiffPD, we observe a 9×

speedup over the Newton’s methods.

7.3 Trajectory Optimization

Torus. In our first trajectory optimization example, a torus is

tasked with rolling forward as far as possible in 1.6 seconds, simu-

lated as 400 steps of 4 milliseconds in length (Figure 12). To achieve

this, we set the objective to be the negation of the robot’s center

of mass at the final step of its trajectory. Eight muscle tendons

are routed circumferentially along the center of the torus, com-

bined, creating a circle that can be actuated along any of eight seg-

ments. The optimization variables are the actuation of each muscle

at each of 20 linearly spaced knot points, and the actual action se-

quences are generated by linearly interpolating variables at these

knot points. Since there are eight muscles, this results in 160 deci-

sion variables overall. We use a convergence threshold of 1e-6 as

indicated by the evaluation experiment in Section 6.2.

The major challenge in optimizing the sequence of actions of

this rolling torus lies in the fact that it constantly breaks and

reestablishes contact with the ground. When running L-BFGS on

this example, we noticed more local minima than previous exam-

ples and L-BFGS often terminated prematurely without making

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:16 • T. Du et al.

Fig. 11. Inverse design. The initial and final states of the “Routing ten-

don” example before and after optimization. The goal is to let the end effec-

tor (red dot) hit a target position (blue dot) at the end of simulation. Left:

the initial configuration of the tendon with randomly generated actuation

signals. The red (muscle expansion) and cyan (muscle contraction) colors

indicate the magnitude of the action. Middle left: final state of the tendon

with random actuation. Middle right: initial configuration of the tendon

with optimized actuation. Right: final state with optimized actuation.

significant progress. To alleviate this issue, we randomly sampled

16 initial solutions and selected the best among them to initialize L-

BFGS optimization, which eventually learned a peristaltic contrac-

tion pattern that allows it to start rolling forward and make consid-

erable forward progress (Figure 12); further, DiffPD provides a 6×

speedup using eight threads compared to the Newton’s method.

In order to demonstrate the applicability of our system’s dif-

ferentiability to solving complex trajectory optimization tasks,

we apply our simulator to three locomotion tasks: a “Torus,” a

“Quadruped,” and a “Cow.” All three robots are equipped with mus-

cle fibers whose sequences of actions are to be optimized, and the

goal for all three robots is to walk forward without losing balance

or drifting sideways. All examples use the complementarity-based

contact model in Section 5.2.

Quadruped. For our second trajectory optimization example, a

rectangular quadruped is tasked with moving forward as far as

possible in 1 second. The same performance objective is applied

here as in the “Torus” example; however, in this example a sim-

pler control scheme is implemented. This robot has eight muscles,

routed vertically along the front and back face of each leg, allow-

ing the legs to bend forward or backward. For each leg, the front

and back muscle groups are paired antagonistically; however, they

are allowed a different maximum actuation strength—a parameter

to be optimized. Finally, the entire quadruped is provided a sin-

gle sinusoidal control signal, whose frequency is to be optimized,

that actuates each leg synchronously. These front and back actu-

ation strengths, combined with the frequency of the input signal,

provide three parameters to be optimized. After optimization, the

quadruped was able to walk forward several body lengths (Fig-

ure 13). In terms of the speedup, DiffPD accelerates loss and gra-

dient evaluation by a factor of 4 compared with the Newton’s

method.

Cow. For our third and final trajectory optimization example, a

cow quadruped based off Spot [Crane 2020] is tasked with walking

forward as far as possible in 0.6 seconds (Figure 14). This is a partic-

ularly difficult task, as Spot’s oversized head makes it front-heavy,

and prone to falling forward. In order to compensate, we regular-

ized the objective to promote a more upright gait, adding an addi-

tional −0.3 times the center of mass in z to regularize the forward

objective. Spot uses the same controller and muscle arrangement

as the “Quadruped” example, and a convergence threshold of 1e-6

is used during optimization. Similar to previous examples, the cow

optimizes to walk forward and DiffPD provides a 5 times speedup

compared to the Newton’s method.

Discussion. Locomotion tasks generally involve significant con-

tact, which limits the speedups (4–6 times in the examples above)

DiffPD is able to achieve compared with contact-free problems.

Given the complexity of planning the motion of walking robots

with contacts (optimizing each of the three examples above took

hours to converge with the Newton’s method), a 4–6 times

speedup is still favorable. It is also worth noting that for the

“Quadruped” and “Cow” examples, optimization with the New-

ton’s method led to solutions significantly different from DiffPD,

as indicated by the final loss reported in Table 4. We believe this

is mostly due to the algorithmic difference between the Newton’s

method and DiffPD: as discussed in Liu et al. [2017] and Section 4,

DiffPD is essentially running the quasi-Newton method (as op-

posed to the Newton’s method) to minimize the objective in Equa-

tion (5) which is typically not convex. Therefore, multiple critical

points may exist especially when contacts are involved. For the

three locomotion tasks in this section, it is possible that DiffPD

and two Newton’s methods each explored different critical points

individually and led to different solutions.

7.4 Closed-Loop Control

Inspired by Min et al. [2019], we consider designing a closed-loop

neural network controller for two marine creatures: “Starfish” and

“Shark” (Figure 15). For each example, we specify muscle fibers as

internal actuators similar to Min et al. [2019] in the arms of the

starfish and the caudal fin of the shark. We manually place veloc-

ity sensors on the body of each example serving as the input to the

neural network controller. The goal of these examples is to opti-

mize a swimming controller so that each fish can advance without

drifting sideways. To achieve this, we define the loss function as

a weighted sum of forward velocities and linear velocities at each

timestep. In terms of the neural network design, we choose a three-

layer multilayer perceptron network with 64 neurons in each layer

(30,788 parameters in “Starfish” and 22,529 parameters in “Shark”).

We use the hyperbolic tangent function as the activation function

in the neural network. Unlike prior examples for which L-BFGS

is used for optimization, we follow the common practice of using

gradient descent with Adam [Kingma and Ba 2015] to optimize the

neural network parameters. During optimization, we use a conver-

gence threshold of 1e-3 in DiffPD and the Newton’s method. Ta-

ble 4 provides the final loss after optimization, and we observe a

speedup of 8–19 times for the two examples, respectively.

Comparisons with reinforcement learning. We compare our

gradient-based optimization method to PPO [Schulman et al. 2017],

a state-of-the-art reinforcement learning algorithm. In particular,

we use the forward simulation of DiffPD as the simulation environ-

ment for PPO. For a fair comparison, we construct and initialize the

network for both DiffPD and PPO with the same random seed. We

also implement code-level optimization techniques as suggested

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:17

Fig. 12. Trajectory optimization. The motion sequence of the “Torus” example with random actions (top) and after optimizing the action sequences (160

parameters to be optimized) with DiffPD (bottom). The goal is to maximize the rolling distance of the torus while maintaining its balance. The red and cyan

color indicates the magnitude of the action signal. In particular, the expansion and contraction pattern (middle left and middle right) allows the torus to

roll forward.

Fig. 13. Trajectory optimization. The motion sequences of the “Quadruped” example with sinusoidal control signals whose three parameters are to be

optimized. The goal is to maximize the walking distance of the quadruped. Top: the motion sequence with a random sinusoidal wave of actions. Bottom:

the motion sequence after optimization with DiffPD.

Fig. 14. Trajectory optimization. The motion sequences of the “Cow” example with sinusoidal control signals whose three parameters are to be optimized.

The goal is to maximize the walking distance of the cow. Top: the motion sequence with a random sinusoidal wave of actions. Bottom: the motion sequence

after optimization with DiffPD.

in Engstrom et al. [2019] and tune PPO hyperparameters toward

its best performance. Please refer to our Supplemental Material for

more implementation details.

When comparing the performance of a gradient-free algorithm

like PPO to gradient-based algorithms like Adam or L-BFGS, we

expect gradient-based optimization to be more sampling efficient

than PPO as gradients expose more information about the soft-

body dynamics that are not accessible to PPO. Note that this does

not ensure gradient-based methods are always faster than PPO

when measured by their wall-clock time, because each sample in a

gradient-based method requires additional gradient computation

time. Furthermore, the sampling scheme in PPO is massively par-

allelizable. We report the optimization progress of PPO and our

method in Figure 16. Note that unlike other examples, we follow

the convention in reinforcement learning of maximizing a reward

as opposed to minimizing a loss. In particular, a zero reward indi-

cates the average performance of randomly selected unoptimized

neural networks, and a unit reward is the result from DiffPD after

optimization. We conclude from Figure 16 that Adam and DiffPD

achieves comparable results to PPO but is more sampling efficient

by one or two orders of magnitude. Regarding the wall-clock time,

we observe a speedup of 9–11 times for both examples, respec-

tively, although each sample in DiffPD is more expensive due to

the gradient computation.

7.5 A Real-to-Sim Experiment

We end this section with a real-to-sim experiment “Tennis balls.” In

this example, we capture a video clip of two colliding tennis balls

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:18 • T. Du et al.

Fig. 15. Control optimization. Motion sequences from the optimized closed-loop, neural network controllers of “Starfish” (first row) and “Shark” (third

row), with the corresponding muscle fibers plotted in the second and fourth rows. The goal is to optimize a controller so that the marine creatures can rise

(“Starfish”) or swim forward (“Shark”). The gray and cyan colors on the surface of the muscle fibers indicate the magnitude of the actuation, with gray

being zero actuation and blue the maximum contraction.

on a flat terrain, from which we aim to estimate the camera infor-

mation, the initial position and velocity of each ball, and the param-

eters in the contact model. We model each ball in simulation using

a mesh of sphere with 320 tetrahedrons and 489 DoFs (Table 3). We

model the ball-ground contact with the complementarity-based

method and use the following penalty-based model to compute the

ball-ball contact: when the two balls are in contact, we add a resti-

tution force computed as the product of a stiffness parameter to

be optimized and the difference between the ball diameter and the

actual distance between the two ball centers. Essentially, the resti-

tution force can be treated as a spring model with a rest length

equal to the ball diameter. Additionally, we add a frictional force

whose direction is orthogonal to the restitution force and whose

magnitude is controlled by a frictional coefficient to be optimized.

To define a loss function that measures the discrepancy between

the simulated and actual motions of the two balls, we first extract

the pixel location of two balls’ centers in each frame of the video

clip. Next, we compute in simulation the position of each ball and

project them to the same image space through a pinhole camera

model. We define the loss function as the difference between the

pixel locations of the balls in simulation and from the video clip.

By minimizing this loss, we get our estimation of the camera in-

formation, the initial state of each ball, and the parameters in the

contact model.

We summarize our optimization results in Table 4 and Figure 17.

We randomly sample multiple sets of parameters and pick those

with the smallest loss as the initial guess to our optimization (Fig-

ure 17, left), which shows motion sequences similar to those in

Fig. 16. The optimization progress of Adam plus DiffPD (green) and PPO

(orange) for “Starfish” (left) and “Shark” (right). Note that the axis of

timesteps spent during training or optimization is plotted on a logarith-

mic scale.

the video clip but still with substantial visual differences. The op-

timization process refines our estimation of the parameters and

manages to further suppress the loss and mimics the motions in

the video more closely (Figure 17, middle). The results can be fur-

ther improved if we take into account camera lens distortion or

replace the penalty-based collision model between two balls with

a more accurate one, which we leave as future work.

8 LIMITATIONS AND FUTURE WORK

Differentiable soft-body simulation with proper contact handling

is a challenging problem due to its large number of DoFs and

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

DiffPD: Differentiable Projective Dynamics • 13:19

Fig. 17. A Real-to-Sim Experiment. Motion sequences of the “Tennis balls” example before (left) and after optimization (middle). The corresponding video

clip is shown on the right. Transparent balls indicate the balls’ intermediate locations. To visualize the difference between motion sequences in simulation

and reality, we use yellow squares in the rendered images (left and middle) to denote the corresponding pixel locations of the balls’ centers from the video

clip.

Fig. 18. Twisting Armadillo (a 44337-DoF tetrahedral mesh) with the Neo-

hookean material model for 1 second at 30 frames per second. We use

DiffPD (top) and the Newton’s method (bottom) to compute the forward

simulation and backpropagation. Left to right: the intermediate state of

Armadillo at 0, 10, 20, and 30 frames. The visually identical motions from

the top and bottom rows confirm the correctness of DiffPD’s implementa-

tion of the Neohookean material model. We report the time cost of DiffPD

and the Newton’s method at the lower right corner of the images and no

longer witness a speedup from DiffPD in backpropagation over a direct

solver in the Newton’s method.

complexity in resolving contact forces. We believe one ambitious

direction along this line of research is to provide a physically realis-

tic simulator that can facilitate the design and control optimization

of real soft robots. To close the sim-to-real gap, some nontrivial

but rewarding enhancements need to be integrated into our cur-

rent implementation. First and foremost, similar to other PD pa-

pers, a major limitation in DiffPD is its assumption on the energy

function of the material model. Even though technical solutions

to supporting general hyperelastic materials in PD exist [Liu et al.

2017], it turns out that supporting such materials in DiffPD is not

straightforward. This is because the derivation in Section 4 starts

to fall apart from Equations (20) and (21) when hyperelastic ma-

terial models are used, forcing DiffPD to reassemble the Hessian

matrix ∇2E in each timestep during backpropagation. Although

we can still apply the iterative solver from Section 4 in this case,

we no longer observe a speedup over a direct solver (Figure 18).

Therefore, we switch to the direct solver for backpropagation in

DiffPD when hyperelastic materials are used and leave speeding it

up as future work.

Second, our contact methods do not fully resolve differentiable,

complementarity-based contact and friction. Due to the focus of

this article, our choice of the contact model was intentionally bi-

ased toward ensuring differentiability and compatibility with PD.

It would be more accurate and useful to upgrade the contact mod-

els for both static and sliding frictional forces [Ly et al. 2020] or

to apply a more realistic contact model [Li et al. 2020] while main-

taining its efficiency and differentiability in PD.

A third direction that is worth exploring is to improve the scal-

ability of our algorithm. Currently, the largest example in this

article contains thousands of elements and tens of thousands of

DoFs. It would be desirable to scale problems up by at least one

or two orders of magnitude in order to explore the effects of

more complex geometry. This would obviously be computation-

ally expensive; it would therefore be interesting to explore possi-

ble GPU implementations of DiffPD method to unlock large-scale

applications.

Fourth, although DiffPD is substantially faster than the standard

Newton’s method when assumptions in PD hold, the speedup is

less significant for locomotion tasks (4–6 times in our examples).

We suspect it is the inclusion of contact that slows down DiffPD

both in forward simulation and in backpropagation. Therefore, a

more comprehensive analysis on the assumption of sparse contact

in Section 5 would possibly reveal the source of inefficiency.

Specifically, removing such an assumption would be much desired

to unlock contact-rich applications, e.g., cloth simulation or

manipulation.

Finally, there is room for improving the optimization strate-

gies that can better leverage the benefits of gradients. In all our

examples, we couple gradient information with gradient-based

continuous optimization methods. Being inherently local, such

methods inevitably suffer from terminating at local minima pre-

maturely especially when the loss function has a non-convex land-

scape. It is worth exploring the field of global optimization meth-

ods or even combining ideas from gradient-free strategies, e.g.,

genetic algorithms or reinforcement learning, to present a more

robust global optimization algorithm specialized for differentiable

simulation.

ACKNOWLEDGMENTS

We thank Desai Chen, David I. W. Levin, Bo Zhu, and Eftychios

Sifakis for their feedback and suggestions on this article. The duck

and cow mesh models in Figures 5, 6, and 14 are obtained from

Keenan Crane’s 3D model repository [Crane 2020] under the CC0

1.0 Universal license.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

13:20 • T. Du et al.

REFERENCES
Jérémie Allard, Stéphane Cotin, François Faure, Pierre-Jean Bensoussan, François

Poyer, Christian Duriez, Hervé Delingette, and Laurent Grisoni. 2007. –An open
source framework for medical simulation. Stud Health Technol Inform 125 (2007),
13–8. https://pubmed.ncbi.nlm.nih.gov/17377224/.

Jernej Barbič and Doug James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (July 2005), 982–990.

James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory optimization
for cable-driven soft robot locomotion. In Robotics: Science and Systems.

Josh Bongard, Cecilia Laschi, Hod Lipson, Nick Cheney, and Francesco Corucci. 2016.
Material properties affect evolutions ability to exploit morphological computation
in growing soft-bodied creatures. In Artificial Life Conference Proceedings 13. MIT
Press, 234–241.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly.
2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM
Trans. Graph. 33, 4 (July 2014), Article 154, 11 pages.

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
projective dynamics. ACM Trans. Graph. 37, 4 (July 2018), Article 80, 13 pages.

Desai Chen, David Levin, Wojciech Matusik, and Danny Kaufman. 2017. Dynamics-
aware numerical coarsening for fabrication design. ACM Trans. Graph. 36, 4 (July
2017), Article 84, 15 pages.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. 2013. Unshackling evo-
lution: Evolving soft robots with multiple materials and a powerful generative
encoding. In Proceedings of the 15th Annual Conference on Genetic and Evolution-
ary Computation. 167–174.

Francesco Corucci, Nick Cheney, Hod Lipson, Cecilia Laschi, and Josh Bongard. 2016.
Evolving swimming soft-bodied creatures. In ALIFE XV, the 15th International
Conference on the Synthesis and Simulation of Living Systems, Late Breaking Pro-
ceedings, Vol. 6.

Keenan Crane. 2020. Keenan’s 3D Model Repository. Retrieved Aug. 18, 2020 from https:
//www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and Zico
Kolter. 2018. End-to-end differentiable physics for learning and control. In Ad-
vances in Neural Information Processing Systems. 7178–7189.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis Wyffels. 2019. A differen-
tiable physics engine for deep learning in robotics. Frontiers in Neurorobotics 13
(2019), 6.

Dimitar Dinev, Tiantian Liu, and Ladislav Kavan. 2018a. Stabilizing integrators for
real-time physics. ACM Trans. Graph. 37, 1 (Jan. 2018), Article 9, 19 pages.

Dimitar Dinev, Tiantian Liu, Jing Li, Bernhard Thomaszewski, and Ladislav Kavan.
2018b. FEPR: Fast energy projection for real-time simulation of deformable ob-
jects. ACM Trans. Graph. 37, 4 (July 2018), Article 79, 12 pages.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry. 2019. Implementation matters in deep
RL: A case study on PPO and TRPO. In International Conference on Learning
Representations.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical
Gauss-Seidel method for stable soft body dynamics. ACM Trans. Graph. 35, 6 (Nov.
2016), Article 214, 9 pages.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard
Thomaszewski, and Stelian Coros. 2020. ADD: Analytically differentiable
dynamics for multi-body systems with frictional contact. ACM Trans. Graph. 39,
6 (Nov. 2020), Article 190, 15 pages.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. Retrieved Jun. 3, 2020 from
http://eigen.tuxfamily.org.

David Hahn, Pol Banzet, James Bern, and Stelian Coros. 2019. Real2Sim: Visco-elastic
parameter estimation from dynamic motion. ACM Trans. Graph. 38, 6 (Nov. 2019),
Article 236, 13 pages.

Xuchen Han, Theodore Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang, and Joseph
Teran. 2019. A hybrid material point method for frictional contact with diverse
materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2 (July 2019), Article 17,
24 pages.

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky updates for inter-
active mesh parameterization. ACM Trans. Graph. (TOG) 39, 6 (2020), 1–14.

Jonathan Hiller and Hod Lipson. 2014. Dynamic simulation of soft multimaterial 3D-
Printed objects. Soft Robotics 1, 1 (2014), 88–101.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to control PDEs with
differentiable physics. In International Conference on Learning Representations.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2020. Difftaichi: Differentiable programming for phys-
ical simulation. International Conference on Learning Representations (2020).

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. Chainqueen: A
real-time differentiable physical simulator for soft robotics. International Confer-
ence on Robotics and Automation (2019).

Doug James and Dinesh Pai. 1999. ArtDefo: Accurate real time deformable objects.
In Proceedings of the 26th Annual Conference on Computer Graphics and Inter-

active Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co.,
65–72.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee
Lee. 2018. Dexterous manipulation and control with volumetric muscles. ACM
Trans. Graph. 37, 4 (July 2018), Article 57, 13 pages.

Jing Li, Tiantian Liu, and Ladislav Kavan. 2019a. Fast simulation of deformable
characters with articulated skeletons in projective dynamics. In Proceedings of
the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (SCA’19). Association for Computing Machinery, New York, NY, Article 1,
10 pages.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny Kaufman. 2020. Incremental poten-
tial contact: Intersection-and inversion-free, large-deformation dynamics. ACM
Trans. Graph. 39, 4 (July 2020), Article 49, 20 pages.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua Tenenbaum, and Antonio Torralba. 2019b.
Learning particle dynamics for manipulating rigid bodies, deformable objects,
and fluids. In International Conference on Learning Representations.

Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable cloth simula-
tion for inverse problems. In Advances in Neural Information Processing Systems.
772–781.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton methods for
real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 4 (May
2017), Article 116a, 16 pages.

Mickaël Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020.
Projective dynamics with dry frictional contact. ACM Trans. Graph. 39, 4 (July
2020), Article 57, 8 pages.

M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. 2020.
Primal/Dual descent methods for dynamics. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’20). Eurographics
Association, Goslar, DEU, Article 9, 12 pages.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross.
2011. Example-based elastic materials. In ACM SIGGRAPH 2011 Papers (SIG-
GRAPH’11). Association for Computing Machinery, New York, NY, Article 72,
8 pages.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Trans. Graph. 23, 3 (Aug. 2004), 449–456.

Sehee Min, Jungdam Won, Seunghwan Lee, Jungnam Park, and Jehee Lee. 2019. Soft-
con: Simulation and control of soft-bodied animals with biomimetic actuators.
ACM Trans. Graph. 38, 6 (Nov. 2019), Article 208, 12 pages.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective
Dynamics: Fast Simulation of General Constitutive Models. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’16). Eu-
rographics Association, Goslar, DEU, 21–28.

Jorge Nocedal and Stephen Wright. 2006. Numerical Optimization. Springer Science
& Business Media.

Matthew Overby, George Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ projective
dynamics: Fast simulation of hyperelastic models with dynamic constraints. IEEE
Trans. Vis. Comput. Graph. 23, 10 (2017), 2222–2234.

Jovan Popović, Steven Seitz, and Michael Erdmann. 2003. Motion sketching for control
of rigid-body simulations. ACM Trans. Graph. 22, 4 (Oct. 2003), 1034–1054.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable differen-
tiable physics for learning and control. In International Conference on Machine
Learning.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,
and Peter Battaglia. 2020. Learning to simulate complex physics with graph net-
works. In International Conference on Machine Learning.

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable fluid dynamics for deep
neural networks. Conference on Robot Learning (CoRL’18).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv:1707.06347. https://arxiv.org/abs/
1707.06347.

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A
practitioner’s guide to theory, discretization and model reduction. In ACM SIG-
GRAPH 2012 Courses (SIGGRAPH’12). Association for Computing Machinery, New
York, NY, Article 20, 50 pages.

Fun Shing Sin, Daniel Schroeder, and Jernej Barbič. 2013. Vega: Non-linear FEM de-
formable object simulator. Computer Graphics Forum 32, 1 (2013), 36–48.

Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Matusik, and Daniela
Rus. 2019. Learning-in-the-loop optimization: End-to-end control and co-design
of soft robots through learned deep latent representations. In Advances in Neural
Information Processing Systems. 8284–8294.

Andrew Stuart and Tony Humphries. 1996. Dynamical systems and numerical analy-
sis. Cambridge University.

Maxime Thieffry, Alexandre Kruszewski, Christian Duriez, and Thierry-Marie Guerra.
2018. Control design for soft robots based on reduced-order model. IEEE Robotics
and Automation Letters 4, 1 (2018), 25–32.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

https://pubmed.ncbi.nlm.nih.gov/17377224/
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
http://eigen.tuxfamily.org
https://arxiv.org/abs/1707.06347

DiffPD: Differentiable Projective Dynamics • 13:21

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. 2018. Differen-
tiable physics and stable modes for tool-use and manipulation planning. In Ro-
botics: Science and Systems, Vol. 2.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
control of smoke simulations. ACM Trans. Graph. 22, 3 (July 2003), 716–723.

Huamin Wang. 2015. A Chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Trans. Graph. 34, 6 (Oct. 2015), Article 246,
9 pages.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on
the GPU. ACM Trans. Graph. 35, 6 (Nov. 2016), Article 212, 10 pages.

Chris Wojtan, Peter Mucha, and Greg Turk. 2006. Keyframe control of complex par-
ticle systems using the adjoint method. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’06). Eurographics
Association, Goslar, DEU, 15–23.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable Galerkin multigrid
method for real-time simulation of deformable objects. ACM Trans. Graph. 38, 6
(Nov. 2019), Article 162, 13 pages.

Received October 2020; revised August 2021; accepted October 2021

ACM Transactions on Graphics, Vol. 41, No. 2, Article 13. Publication date: November 2021.

