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Co-Learning of Task and Sensor Placement for
Soft Robotics

Andrew Spielberg “, Alexander Amini

Abstract—Unlike rigid robots which operate with compact de-
grees of freedom, soft robots must reason about an infinite dimen-
sional state space. Mapping this continuum state space presents
significant challenges, especially when working with a finite set
of discrete sensors. Reconstructing the robot’s state from these
sparse inputs is challenging, especially since sensor location has
a profound downstream impact on the richness of learned models
for robotic tasks. In this work, we present a novel representation
for co-learning sensor placement and complex tasks. Specifically,
we present a neural architecture which processes on-board sensor
information to learn a salient and sparse selection of placements
for optimal task performance. We evaluate our model and learning
algorithm on six soft robot morphologies for various supervised
learning tasks, including tactile sensing and proprioception. We
also highlight applications to soft robot motion subspace visualiza-
tion and control. Our method demonstrates superior performance
in task learning to algorithmic and human baselines while also
learning sensor placements and latent spaces that are semantically
meaningful.

Index Terms—Soft robot materials and design, soft sensors and
actuators, modeling, control, and learning for soft robots, deep
learning methods.

I. INTRODUCTION

ECENT efforts in soft robotics research have led to

breakthroughs in soft robot modeling and design [1]-[3].
Most of these victories, however, have relied on virtual
simulation environments where full state information of
a system’s dynamics is visible to a controller. However,
in the physical world, soft robots’ continuum bodies are
high/infinite dimensional. Full state information can thus only
be achieved by sensorizing every point on the body, which is
both impossible to manufacture and computationally intractable
for efficient processing of downstream tasks. Although several
approaches have been proposed for efficient reasoning about
the high-dimensional state of soft robots [4], [5], they rely
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on extrinsic information to estimate robot state in a global
reference frame, such as external cameras or motion capture
devices. In order to realize the dream of fully untethered soft
robots, intrinsic, on-board information must be used.

To address this need for intrinsic soft robotic modeling, we
focus on the problem of co-learning optimal sensor placements
and models for general supervised tasks. Different locations
on a soft robot experience different dynamic responses during
motion; thus, sensor distribution can have a profound impact
on a robot’s ability. Better understanding the impacts of sensor
placement can create the rich representation of soft bodies
needed for complex modeling and control tasks.

We propose a neural architecture for simultaneously learning
soft robotic tasks and the optimal sensor placement for that task.
Our model relies purely on intrinsic measurements — specif-
ically, strains and strain rates — and is amenable to physical
realization through off-the-shelf sensors. Since many soft robot
representations are nodal in nature, we propose a novel architec-
ture which adopts existing work in point-cloud-based learning
and probabilistic sparsification. Our method treats sensor design
as the dual of learning, combining physical and digital design in
a single end-to-end training process.

Although computational sensing is traditionally thought of
as an algorithmic problem, the choice of sensor placements has
vital ramifications on hardware as well. For many sensor fabri-
cation methods, such as directly embedding strain sensors into a
solid elastic substrate, physical sensor placement is immutable
and often laborious. Even in cases where sensor design allows
for reconfiguration, sensorizations robust to a wide variety of
environments or state distributions are still needed in order
to maximize deployment time without expensive human-in-the
loop hardware modifications.

To our knowledge, ours is the first method for general task
learning for dynamic soft robots while optimizing sensor place-
ment, focusing on simulated soft robots. We contribute the
following: 1) A neural architecture for reasoning about soft robot
state through measured strains and strain rates. 2) A probabilistic
sensor representation suited to sparsification to a minimal set
for downstream tasks, and a co-design algorithm for achieving
this which outclasses both automated and human baselines.
3) Demonstrations of task learning and sensor placement co-
design in two applications — tactile sensing and proprioception
— across seven soft robot morphologies. The representations
learned from these tasks can be applied to unlock a novel task —
closed-loop computational control of soft walking robots from
solely intrinsic sensor measurements, and no external sensors.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Although our architecture is general to supervised learning
tasks with nodal inputs, we demonstrate its utility to important
soft robotic problems, such as in-hand sensing and full state re-
construction. Despite the fact that these problems have not been
successfully handled with manually specified sensor locations,
we are able to demonstrate success on a wide range of topologies
of fully dynamic soft robots operating on intrinsic sensor data.

II. RELATED WORK

a) Automated sensor placement: Task-optimal sensor place-
ment has been extensively studied in robotics , typically in
the context of vision [6]-[8]. These works focus on optimal
placement of cameras for tasks such as target detection, but do
not involve learning. Classical methods for co-design of sensor
placement and learning models come in two flavors. The first em-
ploys a heuristic search for sensor placement as an outer loop to
an inner learning problem [9], which wraps a genetic algorithm
around learning. Such a search would be prohibitively expensive
for deep learning approaches. The second exploits specific prob-
lem structure to formulate an efficient co-optimization problem,
as in [10]. Unfortunately, these approaches are task specific and
are not applicable to complex soft robotics problems presented,
nor general task learning. Morphological sensorimotor opti-
mization has also been explored in evolutionary robotics [11],
but in the context of rigid robots.

The problem of optimally sensorizing soft robots is less
explored. [12] demonstrated curvature sensor placement algo-
rithms for kinematic reconstruction of a soft arm’s pose. [13]
demonstrated algorithms for the placement of piezoresistive
sensors on soft structures for static pose reconstruction. [14]
demonstrated an algorithm which minimized sensor placement
for static pose reconstruction; however, their method was spe-
cific to a specialized sensor type that is only amenable to
soft arms and tendrilic structures. Furthermore, these preceding
works are focused on static systems reconstructing a specific
pose, a far cry from the goal of dynamic soft robotic systems.

Outside of soft robotics, task-driven co-learning of task and
sensor design has been explored in computer vision and signal
processing. For example, [15], [16] examined camera sensor
design for imaging performance in specific domains. [17] pre-
sented a differentiable machine learning model for simulta-
neously sparsifying over beacon location and learning neural
representations for RF localization tasks. Although this work is
similar in approach, our method relies on a drastically different,
point-cloud-based architecture in order to learn in challenging
intrinsic material coordinates (rather than the extrinsic coor-
dinates of RF localization, which can exploit a simpler, more
general multilayer-perceptron (MLP) architecture), and uses
an adaptive sparsifying layer with a carefully chosen regular-
izer rather than viewing sensor selection as a multicategorical
selection.

b) Computational intrinsic sensing for soft robotics: Although
the majority of the literature on computational soft robot rea-
soning has abstracted away sensing / representation through
piecewise approximations or external motion capture systems,
there is some work on computational soft robot reasoning using
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intrinsic sensors. [18]-[20] introduced novel actuators with em-
bedded sensors for understanding static grasped object shapes
and estimating motion profiles. Other works [21]-[23] have
combined established sensor and actuator designs with statis-
tical methods for classification of grasps, texture identification,
and pose reconstruction. Recent success has been found in the
wearables literature [24], [25], with work presenting model-free
learning-based methods for human hand reconstruction or grasp
classification. For fully soft structures, [26], [27], have demon-
strated significant promise for pose reconstruction. The former
of these works employs a finite element model to interpolate limb
sheath stretches through capacitive strain data in a model-based
way; the latter takes a model-free approach to predict soft finger
pose using a recurrent neural networks on physical hardware
with strain sensing. However, none of these works reason about
system dynamics or examine co-design with strain sensor place-
ment.

III. PRELIMINARIES

Given a budget for the maximum number of sensors we
wish to place on a robot, 7, we seek to learn both the optimal
locations on a soft robot body to place those sensors, along
with a model that uses those sensor inputs to solve complex
tasks. Such optimal sensor locations depend both on the type
of motion the robot will experience as well as which regions
of the robot have the highest task relevancy. The combination
of complex geometries and dynamics of soft robots make this a
highly difficult task, not easily solved by naive strategies such
as simply sensorizing the most dynamic portions of the robot
(which may be densely clustered and are possibly irrelevant
to the target task). Furthermore, while this paper deals with
soft robots in simulation, we wish for our sensor designs to
be physically deployable, meaning only the intrinsic strain and
strain rate information operating in a relative reference frame
(i.e., material space) can be used.

In this paper, we consider dynamic soft robots simulated using
the material point method (MPM). MPM approximates contin-
uum robots as collections of particles. For a d-dimensional robot
(d = 2 or 3), each particle i contributes a small bit of volume to
the overall soft robot, and stores relevant information about its
dynamic state; these include its position p; € R<, its velocity
v; € R?, its deformation gradient F; € R™? (a measure of
kinematic stretch and shear), and its affine velocity C; € Rdxd
(a measure of kinematic stretch and shear rate). We employ
the open source, physically-based ChainQueen simulator [3],
whose differentiability can be used to solve motion-planning
tasks, useful for generating task-driven trajectory datasets. We
emphasize that although we choose MPM as our soft robot
simulation method and its particle representation as input to our
models, our learning method is not specific to MPM. Our method
is amenable to any simulation method which has a node-based
representation, including finite element methods. For the curious
reader, however, [28] and [29] present in-depth tutorials on
MPM.

We make the following assumptions about our strain sensor
model: 1) Strain (rate) measurements have perfect accuracy and
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(a) The foundation of our models is a Particle Sparsifying Feature Extractor (PSFE) which takes as input the full, dense sensory information (left) and

extracts a global feature representation (right) from a sparse subset of the inputs. Our model simultaneously learns this representation and sparsification of the input.
Since the input is an unordered point cloud, the PSFE also maintains order invariance through shared feature and point transformations as well as global pooling
operations. We employ the PSFE on various complex tasks: (b) Supervised regression and classification of object characteristics from grasp data. (c) Learned
proprioception by combining PSFE with a variational decoder network. (d) Learned control policies for a soft robot.

no latency. 2) Strain sensors can be placed on each particle and
measure the strain (rate) over the volume of that particle. 3)
Each sensor provides both strain and strain rate information
along each (material space) axis. We relax the first assumption
in experiments in Sec. V-D. The Green Strain S; of a particle
i is defined as: S; = 2(F7F; — I) The Green strain rate ddst’i
of a particle 7 can be efficiently computed analytically as:
43 — 1FT(CT + C;)F;. We provide a derivation in Appendix
1. As most real-world strain sensors can only measure stretch,
but not shear, we work only with the diagonal entries of S and
% in this paper. Most real-world soft robot sensing systems
rely purely on stretch sensors (e.g. [27]), which are cheaper and
easier to fabricate than shear sensors. Despite this limitation,
efficient task learning is still possible, emphasizing that there
is a likely subspace of robot motions that can be learned from
sparse sensory input, a subspace which can be leveraged through
data-driven methods like ours.

The remainder of this paper is organized as follows. First, we
describe our point-based neural network architecture, which we
use for all tasks considered. Next, we describe our sparse neuron
model, which populates the input layer of our network and adap-
tively down-selects salient sensor locations. We then explain
how we combine sensor and task learning in a simple learning
algorithm. Finally, we demonstrate our co-learning approach on
two novel soft robotics problems — dynamic in-hand sensing
and dynamic state reconstruction — and show applications to
further tasks such as control.

IV. METHOD

In this section, we formulate a neural architecture suited
to sparse sensorization for soft robotics tasks. Our network is
modular and takes instrinsic sensor readings of the body as input.

A point sparsification and feature extraction (PSFE) network
simultaneously learns a representation of these sensor readings
along with a set of sparse sensor locations. Our PSFE (Fig. 1
A) is used as the core building block for all demonstrations and
applications presented in this paper, including object grasping
prediction (B), learned proprioception (C), and control (D).

a) Point sparsification and feature extraction: Core to our
algorithm is a neural network (NN) architecture for learning
representations of soft robots from their raw, dense, and intrinsic
sensor readings. By using a NN architecture, our method can
employ drop-out techniques targeted to NN input layers as a
means of choosing sparse sensor location.

To achieve accurate state representation during simulation,
soft robots must be discretized into many individual particles.
Candidate sensor locations are co-located with our MPM parti-
cles, creating a particle set which can be viewed as a point cloud.
Thus, our architecture builds upon prior models for point cloud
scene understanding, but makes important adaptations for the
physical soft robotics setting.

Our representation builds upon PointNet [30], treating our
robot particle set as a set of N order-invariant points in space.
This invariance is created using a series of shared feature
transformations followed by point transformations into point
features. The final representation is computed by pooling the
features, again using order-invariant (mean) pooling. PSFE
contributes two modifications in order to make the PointNet
architecture amenable to soft robotics and sensor placement.

First, the original PointNet architecture reasoned purely on
measured (z, y, z) Cartesian coordinates in space as input. Our
sensors, however, are only able to measure axial strain and strain
rates. While there is nothing preventing using these strain “coor-
dinates” in lieu of Cartesian coordinates, such a representation
would fail, due to PointNet’s inherent symmetric interpretation
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of point distributions. Each input to PointNet is processed as an
unordered set, not an ordered list. Thus, a distribution of strain
and strain rates would be interpreted the same way regardless
of where they occurred on a soft robot; wholly different system
dynamics could be interpreted as equivalent states. To avoid this
problem, we carry along the local coordinates of the undeformed
soft robot. Since the undeformed coordinates are the same
regardless of robot state, this provides no feature information,
but rather disambiguates particles in the point set while also
providing spatial coherence which the architecture exploits. The
result is that each point is represented by a 3 x d vector: strains,
strain rates, and static, undeformed position (material space)
coordinates.

Second, the input layer to the PointNet architecture is de-
terministic. We modify our architecture to allow for stochastic
weights in the input layer during training. During each training
step, neurons corresponding to input ¢ are sampled on or off
according to Bernoulli random variable parameterized by some
0;. Our training procedure will push 6; to 0 or 1, thus learning
a deterministic model of important inputs, and equivalently,
optimal sensor placements.

b) Sparse sensor selection layer: Our representation uses
stochastic neurons to sample different sensor candidates for
extracting features as part of our Sparse Sensor Selection Layer
(SSSL). By combining this representation with a sparsifying
loss, we devise a training objective to learn an optimal sensor
placement. Unlike classical NN weights, which are typically
unbounded real values, our SSSL learns a set of binary {0, 1}
weights as a sparse mask over our dense input. This is done
by first learning a continuous weight vector, transforming to
probabilities € [0, 1], and using these probabilities to Bernoulli
sample the binary mask. More concretely, given a set of contin-
uous weights, W;, we compute the probabilities, 85, and sample
binary weights, b;, as follows:

Op, = o(W;) (1)
b; = Bernoulli(#;) = ceil (6; — U) (2)

where o(-) is the sigmoid function, and U ~ Unif(0,1) is a
uniform random number between O and 1. While the forward
pass through these functions is well-defined, the backward pass
is not, since the gradient of ceil(+) is zero for almost all inputs.
To enable backpropogation we override the gradient:

o _
00;

This modification, similar to BinaryConnect [31], allows the
SSSL to forward propagate continuous, learned weights through
a binary mask, transforming dense sensor candidates into sparse
sensor locations. Fig. 2 illustrates the transformation of these
random variables into discrete sensor locations.

c) Co-learning algorithm: While a stochastic representation
of neurons is useful for testing their saliency (evidenced by
gradients with respect to 0), this sampling does not sparsify the
input layer in its own right. In order to sparsify over the input
layer and sensor placement, we introduce a regularizer that can
be added to the task loss L ((w) of any learning problem, where
w are the non-sparsifying weights of the learning model. Given

0, —U. 3)
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rameterizes the probability of each sensor location with weight W;. Sampled
gradients evolve W; toward oo, pushing the corresponding ; probabilities
toward O or 1, sparsifying the candidate sensor set.

Algorithm 1: Training Algorithm.

Given: Dataset Z, task loss function L., learning architecture with
N inputs.
Randomly initialize network weights.
while >~ 6; > 7 or > round(0;) > 7 do
for Minibatch I € Z do
L =1L+ wsLs
w—w—nVyL
0 + constant(round(0))
while Not converged do
for Minibatch I € 7 do
w <+ w—nVyL (Sec. IV-Ob)

(Sec. IV-0b)

a target sensor budget 7 and a max sensor count/input layer
size N, we have a sparsifying regularizer L4(0) and a total loss
L(w, ) to be minimized:

st):\%” L L(W.0) = Lo(w) + 0L, (6)

where w; is a user-defined weight that trades off sparsification
and the target learning task. The absolute value efficiently pushes
most of the #; values to 0. Despite the sparsifying nature of
Ly, it is possible for a few weights to have partial probability
at convergence, achieving a “mixed strategy Nash” against a
target dataset. To alleviate this concern, once Zl 0; < T and
>, round(;) < 7, we appropriately round all ; to 1 or 0, fix
them, and continue training (Algorithm 1).

V. RESULTS

We evaluate our method on two supervised learning prob-
lems — grasped object classification and proprioceptive state
reconstruction. Since previous work [9], [10] is inapplicable
to a general task learning regime, we focus on two baselines:
human-specified sensor locations and random placement. These
demonstrations show the full power of a sensor placement model
in our co-learning pipeline as opposed to the fixed-sensor, static
representation learning problem.

A. Tactile Sensing

Given a dynamic, soft robot gripper with a fixed, open
loop trajectory, we seek an optimal sensor placement and
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Fig.3. Results for object classification ((a)—(d)) and stiffness regression ((e)—(g)) tasks. (a) Convergence of the loss for 7 = 5, 10, 20 on the sparifying algorithm,

with comparison to baselines and full sensorization. (b) Confusion matrices for our co-learning algorithm across different sensor budgets. (c) Evolution of sensor
probabilities over training time, validating that each 6; converges toward 0 or 1, with final sensor placements shown in (d). (e) Prediction accuracy for the stiffness
regression task, comparing the baseline (top) to our algorithm (bottom). (f) Evolution of sensor probabilities. (g) Optimized sensors have more task-relevant

locations.

classification/regression network that can best reason about a
grasped object. In the classification task, the gripper must dis-
ambiguate between four shapes (square, diamond, triangle and
no shape) through manipulation. 120 simulations are performed
for each class in total. In the regression task, a ball with un-
known Young’s modulus is manipulated and its stiffness must be
inferred. 1000 simulations are captured in total for the stiffness
regression problem with Young’s modulus varying from 10° to
10%. Example simulations can be seen in the video.

In all tasks, the location and size of the objects is varied
between runs, with noise added to actuators. This makes the
learning tasks challenging as the robot must learn to reason
about the qualities of the different tactile responses — subtle
differences that can be difficult to detect. The network cannot
simply memorize motion trajectories, especially given the added
noise. The classification task amplifies this difficulty, since
contact with the object only happens at a few rather discrete
moments, making supervision sparse.

Each sensor on the gripper provides 2 x d inputs at each time
step, over a time series of 7' = 50 simulation steps. 7 x 4 x T’
time series inputs are captured from the gripper and provided to
the network.

To solve these tactile sensing tasks, we augment our PSFE
with a recurrent LSTM module to process the entire trajectory
of data. Atevery timestep, features are extracted using our PSFE,
fed into our LSTM with 50 recurrent units, and finally passed
through a single fully connected layer which predicts the output.
For the shape classification task, the network was to predict a
categorical distribution, f(x;w) over K possible objects with
softmax activation, and was trained using a cross entropy loss
function. For the stiffness regression task, the final layer was
to output a real scalar, and was trained using a mean squared
error loss from the ground truth stiffness. These losses can be
expressed as,

Ly ==Y yi log(f(x;w)i)

(shape classification)

L = |ly = f(x;w)ll2

(stiffness regression)

Results for both tasks can be found in Fig. 3. We used Adam
as our optimizer, set the sparsity regularizer to 0.01, the learning

rateto 5 x 107, and the minibatch size to 8. We ran our pipeline
for 7 = 5,10, 20. We compare to a baseline where 7 sensors are
assigned randomly a priori and fixed. Our co-learning method
vastly outperforms the baseline in generalization on test sets.
While the baseline overfits quickly due to poor sensor placement,
our algorithm places sensors in regions most relevant to the
tactile sensing task. Specifically, it places sensors at common
gripper-object interaction points, such as the interior gripper
base and fingertips.

B. Proprioception

Given strain and strain rate inputs from a collection of sensors
(a 2 x d x 7 input space), the goal is to reconstruct the entire
position map (deformation) and velocity map (deformation rate)
of the robot (a 2 x d x N prediction space). Here, n is a set
number of particles whose pose we wish to predict. This is
difficult for two reasons. First, 7 < N; a low input dimension
must predict a much larger output dimension. Second, four of
our six robots are floating base robots; neither rigid degrees of
freedom nor ground contact information are provided, making
state estimation challenging.

We employ a similar architecture as used in Sec. V-A. The
PSFE outputs an 8 dimensional latent space. Then, a fully con-
nected MLP is appended of hidden layers (64—128) with ReLU
activations everywhere but the final layer translates the latent
space to pose predictions. While the bottlenecking latent space
may seem a handicap, we still achieve excellent pose prediction,
since soft robots have natural subspaces that are captured by
neural architectures [S]. Further, a compact latent space unlocks
applications such as motion subspace visualization and control,
which we explore later.

Our loss function was chosen to be the Lo difference of
the reconstruction of the normalized positions and velocities
of each particle compared to ground truth. We also add a small
variational autoencoder loss [32], [33] to ensure a descriptive
latent space. Formally, our task loss L;(w) is:

Li= Y |fxw) =yl +w L (x,y;w) (4
(x,y)eT



SPIELBERG et al.: CO-LEARNING OF TASK AND SENSOR PLACEMENT FOR SOFT ROBOTICS

1213

TABLE I
AVERAGE MINIMUM RECONSTRUCTION ERRORS (LOWER IS BETTER) OF OUR S1X ROBOTS FOR THREE SENSOR COMBINATIONS, FOR OUR ADAPTIVE METHOD,
FOR THE RANDOM SENSOR PLACEMENT BASELINE, AND WHERE APPLICABLE, FOR THE HUMAN BASELINE. FOR OUR ADAPTIVE METHOD, MINIMA WERE TAKEN
ONLY ONCE THE TRAINING REACHED THE CLAMPED, FINE-TUNING PHASE. OUR METHOD ALWAYS OUTPERFORMS THE RANDOM AND HUMAN BASELINES AND
TYPICALLY BEATS THEM BY A SIGNIFICANT MARGIN; BOLDED RESULTS INDICATE WHERE OUR ALGORITHM OUTPERFORMS THE RANDOM BASELINE BY AT
LEAST A STANDARD DEVIATION ON EITHER SIDE. AN ESTIMATED “BEST” RECONSTRUCTION ERROR FOR OUR ARCHITECTURE IS PRESENTED IN THE FAR RIGHT
COLUMNS, COMPUTED BY TRAINING WITH A SENSOR ON EACH TARGET PARTICLE

where T is the dataset of strain (rate) (x) and position/velocity
(y) pairs, f(-;w) is our network which predicts robot pose
for a given input, and L, is the VAE regularizer loss (see,
e.g.,[34]). w, = 10~*isaregularization weight. Adam was used
as the optimizer with a learning rate 10~3. For each problem,
400 randomly downsampled particles were simultaneously used
as reconstruction targets and candidate sensor locations. Other
hyperparameters are in Appendix 2.

Our dataset was generated by capturing frames from trajec-
tories generated during robot motion optimization. We used the
control optimization from [3], which performs gradient descent
on model-based simulation gradients. By capturing a variety of
motions from different parts of the optimization, a wide variety
of motion frame data was captured. Six pneumatically-powered
robots were explored based on models in prior related work: a
2D Biped, a (fixed-base) 2D Arm, a 2D Elephant, a 3D Arm, 3D
Quadruped, and a 3D Hexapod. Examples of trajectories used for
data collection, along with sample reconstructions, can be found
in the video. Each of the learning experiments was repeated five
times for 7 = 4,5, 6, and compared to a baseline of random
sensor locations. Results can be seen in Table I; convergence
plots can be found in Appendix 3.

Our adaptive co-learning of sensors and task vastly outper-
forms baselines for all tasks, often with strong statistical signif-
icance. We performed a paired t-test for the aggregate results of
all robot morphologies; strong statistical significance was found
for all morphologies ( Table III) except for the 2D Biped, which
is the easiest example. For the Arm examples, our algorithm
achieves a 30% reduction in error compared to the baseline; the
2D Elephant and 3D Hexapod generally perform 10% better in
the adaptive case. Reasonably, our algorithm delivers the largest
improvements on robots with highly dynamic deformations, as
these are more difficult problems where sensor placement mat-
ters most. Our algorithm outperforms baselines on dynamically
consistent robots such as the Biped and Quadruped as well, but
with smaller gains.

Minimum Reconstruction Error By Task ( Mean/Std.)

Robot + Sensor Count Test Adapt. Test Rand. Train Adapt. Train Rand. Test Human Train Human Full Sensor Test | Full Sensor Train
2D Arm 4 Sensors 9.29/0.403 12.0/2.16 4.09/0.114 5.44/0.510 - - 5.27/0.058 3.25/0.027
2D Arm 5 Sensors 8.93/0.821 12.2/2.22 3.93/0.228 5.38/0.569 14.245538/1.91 6.88/0.71 " "
2D Arm 6 Sensors 7.89/0.43 10.1/1.34 3.73/0.092 4.66/0.307 - - " "

2D Elephant 4 Sensors 9.363/0.333 10.0/0.687 6.95/0.330 8.03/0.524 - - 6.29/1.69 5.60/0.14

2D Elephant 5 Sensors 8.56/0.516 9.89/0.460 6.58/0.252 7.83/0.353 10.03/1.00 7.69/0.48 " "

2D Elephant 6 Sensors 8.21/0.280 8.86/0.420 6.32/0.150 7.10/0.247 - - " "
2D Biped 4 Sensors 11.97/0.7106 | 12.16/0.5069 | 8.827/0.1919 | 9.319/0.2472 - - 8.81/0.162 7.57/0.173
2D Biped 5 Sensors 11.90/0.5839 | 12.02/0.4421 8.724/0.2418 | 9.264/0.2446 12.60/0.86 9.46/0.44 " "
2D Biped 6 Sensors 11.84/0.5308 | 11.95/0.5392 | 8.692/0.2264 | 9.222/0.2792 - - " "

3D Hexapod 4 Sensors 6.04/0.146 6.68/0.263 4.80/0.153 5.03/0.045 - - 5.53/0.110 4.71/0.113

3D Hexapod 5 Sensors 6.01/0.142 6.67/0.187 4.81/0.131 5.06/0.063 - - " "

3D Hexapod 6 Sensors 6.01/0.134 6.58/0.229 4.843/0.132 5.019/0.085 - - " "

3D Quadruped 4 Sensors 6.60/0.260 7.08/0.321 4.38/0.070 4.56/0.125 - - 5.63/0.097 4.36/0.096
3D Quadruped 5 Sensors 6.45/0.294 6.85/0.345 4.34/0.087 4.51/0.113 - - " "
3D Quadruped 6 Sensors 6.36/0.322 6.70/0.373 4.28/0.123 4.48/0.115 - - " "
3D Arm 4 Sensors 3.19/0.118 3.95/0.433 3.14/0.114 3.86/0.390 - - 2.65/0.078 2.60/0.076
3D Arm 5 Sensors 3.17/0.103 3.88/0.437 3.11/0.101 3.78/0.400 - - " "
3D Arm 6 Sensors 3.14/0.099 3.79/0.400 3.08/0.096 3.70/0.367 - - " "
TABLE I

PERFORMANCE SCORES (LOWER IS BETTER) FOR MANIPULATION TASKS ON
BOTH CLASSIFICATION (OBJECT DETECTION) AND REGRESSION (MATERIAL
STIFFNESS) WITH VARYING NUMBER OF SENSORS. OUR METHOD
SIGNIFICANTLY OUTPERFORMS BOTH RANDOM AS WELL AS HUMAN
LABELLING BASELINES

Classification Regression
S 10 Full 5 10 Full
Random 0.19/0.03 0.18/0.03 | 0.003/0.005 || 0.18/0.07 | 0.18/0.04 | 0.01/0.0
Human 0.21/0.10 0.06/0.06 - 0.13/0.01 | 0.12/0.02 -
Sparse 0.009/0.01 | 0.01/0.005 - 0.06/0.02 | 0.08/0.03 -
TABLE III

P-VALUES FROM A PAIRED T-TEST COMPARING OUR ADAPTIVE ALGORITHM
TO THE RANDOM BASELINE APPROACH

P-Values For Proprioceptive Tasks
2D Arm_ [2D Elephant [2D Biped[3D Hexapod [3D Quadruped]
5.4 x 10" *[2.6 x 10_°[ 0.58 [2.5 x 10_°|  0.011

3D Arm
[1.64 x 1077

Fig. 4 presents sample reconstructions of the elephant, along
with the contributions of individual sensors. Here, three of the
five sensors are placed on or near the trunk, which experiences
the most extreme deformation (rates) and thus requires the most
information to reconstruct accurately.

C. Comparison to Human Intuition

The main goal in this paper is to develop an automated
means of co-learning soft robotic tasks and optimizing sensor
placement. In order to further emphasize the value of such an
automated sensor selection, we compare it to manual human
selection. Similar to the random baselines, for these experiments,
sensor locations were chosen a priori to training.

In order to gather data for these experiments, ten participants
(all engineers with knowledge and experience in continuum
mechanics) were provided renderings of all of the 2D robot
morphologies, and provided videos from the captured motion
dataset as well as a description of the target task. The participants
were then asked to select particle locations, choosing where they
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Left: Visualization of the effects of sensor locations (large green circles) on the 2D elephant with different sensor placements (columns) over five exemplar

poses (rows). Frames show the reconstruction error with all but the shown sensor turned off. Brighter colors indicate larger deviation of the reconstructed robot
(blue) from ground-truth (red). Sensors lower reconstruction errors in their immediate neighborhoods the most. The rightmost column shows all five sensors turned
on, yielding the best reconstructions. Right: Latent space of the 2D elephant. Columns represent different latent dimensions of the elephant, generated by one-hot
latent vector activations. Each column ranges latent activations from —1.0 to 1.0. Redder particles indicate higher speeds in x; bluer particles indicate higher speeds

in y.

thought would be the best sensor locations to learn the task.
2D morphologies were used in these experiments in order to
facilitate the user data collection process. On the manipulation
task of both object classification and material regression, humans
were evaluated on their ability to select sensor placements for 5,
and 10 sensors, aligning with Fig. 3.

These experiments provide striking results, which can be
found in Table I (reconstructions) and Table II (manipulation).
Notably, it appears that humans are actually antagonistically bad
at choosing sensor locations for some tasks. Not only does our
method dominate human baselines, but even the random baseline
is competitive with the human baseline, outperforming it in the
case of reconstruction and within statistical bounds in the case
of manipulation. For example, in the case of the 2D Elephant,
many labelers chose to put four sensors on the legs, and only
one on the trunk — even though the legs experience relatively
minor deformations while the trunk experiences rapid, large
deformations. In other cases, the sensors were more equitably
spaced in regions of high deformation, but human biases for
geometrically salient locations, rather than locations relevant to
the experienced strains and task, were noticeable. This insight
emphasizes the importance of computational aid to compensate
for flawed human intuition for sensor coverage.

D. Resilience to Sensor Noise

To further demonstrate our method’s applicability to real-
world systems, we compared our adaptive method to the random
baseline for both the 2D Arm and the 3D Hexapod, in the pres-
ence of sensor noise. These morphologies were chosen because
they experience highly dynamic motion where noise would have
the most impact on results. For five runs, random Gaussian
noise was added to the strain and strain rates, centered at the
ground truth, with 1% standard deviation (roughly matching the
accuracy of physical strain gauges). While reconstruction was
predictably worse than in the no-noise case, our adaptive method

TABLE IV

AVERAGE MINIMUM RECONSTRUCTION ERRORS (LOWER IS BETTER) OF OUR
TwoO MOST DYNAMIC ROBOTS FOR THREE SENSOR COMBINATIONS WITH 1%

GAUSSIAN NOISE ADDED, FOR OUR ADAPTIVE METHOD, FOR THE RANDOM
SENSOR PLACEMENT BASELINE. ANALYSIS METHOD IS THE SAME AS IN THE

NO-NOISE CASE. OUR METHOD ALWAYS OUTPERFORMS THE RANDOM AND

HUMAN BASELINES; BOLDED RESULTS INDICATE WHERE OUR ALGORITHM
OUTPERFORMS THE RANDOM BASELINE BY AT LEAST A STANDARD DEVIATION

ON EITHER SIDE

Minimum Reconstruction Error By Task With 1% Noise ( Mean/Std.)
Robot (Sensor #) Test Adapt. | Test Rand. Train Adapt. Train Rand.
2D Arm (4) 9.42/0.638 11.24/1.17 4.24/0.071 5.04/0.381
2D Arm (5) 9.07/0.980 11.36/2.05 4.16/0.222 5.03/0.572
2D Arm (6) 8.70/0.969 11.09/1.74 4.06/0.245 4.91/0.502
3D Hexapod (4) 6.09/0.03 6.82/0.325 4.85/0.091 5.06/0.100
3D Hexapod (5) 6.13/0.104 6.56/0.365 4.89/0.109 5.01/0.096
3D Hexapod (6) 6.08/0.142 6.53/0.348 4.87/0.125 4.98/0.094

still vastly outperformed the random baseline (Table IV), with
lower variance.

VI. APPLICATIONS

We have judiciously trained our translational proprioception
network through a small latent space. This affords two advan-
tages: interpretable latent motion subspaces, and coordinates for
robot control.

Motion Subspace Visualization: Our latent space provides
natural, low-dimensional coordinates through which to repre-
sent the soft robot. Fig. 4 visualizes our eight latent variables,
demonstrating interpretable coordinates representing different
aspects of the robot’s motion.

Control: We demonstrate how the latent feature space learned
during propioception training can be used as an observer model
for control of the 2D Biped. To our knowledge, our control
demonstration is the first example of closed-loop computational
control of terrestrial soft robots from intrinsic sensors. The Biped
was chosen, since its cyclic motion means a stable gait can be
learned from limited training data. We save the learned encoder
network during Biped proprioception training and use it as the
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observation model during robot control tasks. We optimize a
neural network MLP controller with the fixed PSFE observation
model. Only intrinstic strain and strain information is provided as
input to the observer network, meaning no translation, rotation,
or contact information is provided in any way to the controller,
making this task extra difficult. 20 sensors were required for a
robust observation model. As the robot optimizes, it finds a cyclic
gait. As one would expect, the latent space observed during this
motion is cyclic as well. Please see the video for the optimized
robot and a visual analysis of the latent space during simulation.

VII. CONCLUSION AND FUTURE WORK

We have demonstrated our task and sensor co-learning algo-
rithm on a wide array of learning tasks, including tactile sensing
and dynamic state reconstruction. Our adaptive algorithm vastly
outperforms baselines and our representation has useful appli-
cations to state visualization and control.

Our method reveals several directions for future exploration.
First, it would be interesting to fabricate our simulated robots and
demonstrate trained sensing capabilities in the wild. Developing
a general pipeline for translating learned models to physical
hardware would prove physical practicality of our method and
address the difficult “sim-to-real” research question. Several
considerations would have to be made to accommodate the
physical world, including more accurate sensor noise modeling
and accounting for sensor bulk, sensor latency, and potentially
physical fabrication constraints. Second, many strain sensors
only measure single-directional strain; thus, it would be useful
to have a method for choosing sensor orientation during learning.
Finally, while we focused on soft robots in this manuscript,
we believe our method is general enough to be applied to
high-dimensional sensor co-design problems in other fields, and
hope it inspires such research.
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