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Figure 1. An illustration of our two proposed crowd-guided ensemble methods. Left: Our segmentation ensemble combines the results of multiple
crowd workers through the guidance of an oracle reviewer. Right: Our propagation ensemble gathers the information about where multiple distinct
algorithms fail from the accumulated scribbles of crowd workers and merges it into the result that incorporates the best of each algorithm.

ABSTRACT
In this work, we propose two ensemble methods leveraging
a crowd workforce to improve video annotation, with a fo-
cus on video object segmentation. Their shared principle is
that while individual candidate results may likely be insuffi-
cient, they often complement each other so that they can be
combined into something better than any of the individual
results—the very spirit of collaborative working. For one, we
extend a standard polygon-drawing interface to allow workers
to annotate negative space, and combine the work of multiple
workers instead of relying on a single best one as commonly
done in crowdsourced image segmentation. For the other, we
present a method to combine multiple automatic propagation
algorithms with the help of the crowd. Such combination re-
quires an understanding of where the algorithms fail, which
we gather using a novel coarse scribble video annotation task.
We evaluate our ensemble methods, discuss our design choices
for them, and make our web-based crowdsourcing tools and
results publicly available.
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INTRODUCTION
Video segmentation is one of the most essential tools for movie
post-production and more recently for generating training data
for a multitude of data-driven algorithms. The current practice
heavily depends on specialized rotoscoping artists who utilize
several commercial software products, often in orchestration.
The dependence on specialized artists results in an excessive
financial cost and makes rotoscoping less accessible. In this
paper, we aim to democratize rotoscoping by simplifying the
work of the artist into a less intensive, reviewing role that
supervises a distributed crowd workforce.

Crowdsourcing is a widely used tool for distributing large man-
ual tasks to a group of inexperienced workers. In visual data
processing, it is widely used for 2D image-space operations
like image segmentation. In the previous efforts for crowd-
sourced image segmentation [6, 7, 31, 45], the segmentation
results are accepted from a single worker’s result in its entirety,
discarding the efforts of the rest. This approach wastes the
full potential of the crowd since it only keeps the result of a
single best worker. Moreover, these methods do not trivially
extend to video segmentation as it requires a careful treatment
of temporal coherency, and a frame-by-frame application on
multiple frames may result in a prohibitive cost and thus not
be scalable. The endeavor to propagate image segmentation
to videos is not mature enough and a general solution to this
problem is under active research [38].

We propose a novel crowdsourced video segmentation work-
flow that allows and deliberately utilizes the redundancy of
input, from both crowd workers and automated algorithms.
We make use of two novel ensemble methods in two key steps
frequently arising in modern video segmentation pipelines [1,
10], namely keyframe segmentation and propagation (see Fig-
ure 1). Our focus is on exploring new collective capabilities of
the crowd in complex macrotasks where skills are needed, and
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ambiguities are common. We primarily target novel crowd
interactions with automatic methods, while following a desire
for higher segmentation quality and scalability. Our main
contributions consist of:

• The acquisition of higher-quality segmentation by merging
the work of multiple crowd workers,
• The improvement of crowdsourced segmentation capabili-

ties with the introduction of negative polygon annotations,
• A novel coarse scribbling task to merge multiple automated

propagations locally with the guidance of the crowd,
• The application of our scribble annotations to delegating

segmentation review to the crowd, and further to propagat-
ing trimaps for video matting, illustrating their flexibility.

We evaluate our methods and design decisions thoroughly and
discuss their merits and shortcomings. We make our tools
and annotation results public to facilitate future research: see
http://crowdensembles.csail.mit.edu.

RELATED WORK
A canonical system for human-in-the-loop video object seg-
mentation is rotoscoping [10]. An input video is isolated
to cuts, which are then decomposed into keyframes. The
keyframes are manually segmented and then propagated to
neighboring frames automatically using motion cues and im-
age features. Finally, the propagated segmentations are refined
manually [1]. This process is repeated until the desired qual-
ity is achieved. Since it requires skilled artists and its pace
is rather slow (fifteen frames per day in average [30]), the
rotoscoping pipeline is cost-intensive, seldom scalable and
poorly accessible. Nonetheless, it is a crucial tool in diverse
areas from simple image composition to visual effects used
for movie productions to the generation of ground truth an-
notation on which today’s artificial intelligence (AI) engines
depend. This work tries to make this process more accessible
by relying on a crowd workforce.

Crowdsourced Image Segmentation
Recent crowdsourcing systems for image segmentation in-
clude OpenSurfaces [7], upon which our segmentation inter-
face is based; Intrinsic Images in the Wild [6]; Materials in
Context [8]; the hierarchical instance segmentation pipeline of
Microsoft COCO [31]; and the Video Annotation Tool from
Irvine, California [45]. They share a common strategy: vali-
dating a single worker’s annotations. Our approach embraces
the small, local errors that different annotators or automatic
methods make and relies on workers to combine multiple
segmentations into a higher-quality result.

Hybrid Crowd-AI Systems
Many crowd-annotation systems improve on challenges such
as scalability and cost-effectiveness [16, 35, 44], worker con-
sensus [20, 18], annotation quality [21], crowd-AI interaction
algorithms [9, 36, 28], identifying breakage in automated la-
beling [48], and workflow control [14]. In their paper on the
future challenges facing crowd work, Kittur et al. [27] empha-
size that crowd-guided AI systems are a core problem of this
field. Our work shares the same intent of recent crowd-AI sys-
tems [22, 29, 19] to combine the knowledge of the crowd with

machine learning and computer vision, and similarly treats
the crowd as a core component of the full system. We present
the first attempt to have ensembles of crowd workers guide
automatic video segmentation.

Video Segmentation Propagation
Segmentation propagation plays a crucial role in reducing
the workload of per-frame segmentations and is extensively
studied in the video segmentation literature [13, 37, 33, 42].
Most recent offline approaches are increasingly using com-
plex data-driven models that rely on the availability of video
segmentation datasets, which the recent benchmark of Per-
azzi et al. [38] points out the scarcity of, as well as their
limited size and variations. On the other side, interactive meth-
ods [5, 39, 47, 32, 41] rely on complex hand-crafted features
and cues. This work leverages the diversity of propagation
methods combined with a crowd workforce to implicitly select
the best features and propagation strategies.

ENSEMBLE METHODS USING THE CROWD
Ensemble methods combine multiple results to achieve higher
quality than any of the individual results [17]. In crowdsourc-
ing systems, it is common practice to ensemble the results
of tasks which exhibit high variance inherent to the varying
degrees of human skills, attention or complex internal moti-
vations. The most common approach is to make a Bayesian
decision, which defaults to a simple voting scheme with votes
possibly weighted by their confidence if such information is
available.

Most crowd-AI systems eventually make use of an ensemble
strategy. However, these primarily happen in microtasks where
the result can be merged automatically or easily evaluated by
a human. Image and video segmentations are macrotasks
for which ensembles have not yet been proposed. Further-
more, their quality evaluation is complicated because they
contain many ambiguities such as motion blur, light interac-
tions, clutter and other visual artifacts. Our results show that
segmentations are often neither good nor bad as a whole.

We propose the use of novel ensemble strategies in two compo-
nents of our video segmentation pipeline: first for individual
frame segmentations and second in merging multiple correc-
tions from the crowd in propagated segmentation results. We
do so with the considerations to generate high-quality video
segmentation results from the crowd.

Segmentation Ensembles
The standard approach for single-frame segmentation acquisi-
tion in large crowdsourcing efforts such as OpenSurfaces [7]
and COCO [31] consists of using a secondary task to evalu-
ate the quality of each individual segmentation. If any single
segmentation is evaluated as sufficient, it is accepted, else
it is rejected and a new segmentation is requested. With a
known set of expert segmenters [34] or qualified workers [7],
the evaluation task can be sidestepped and the segmentation
is directly accepted. While this approach results in a small
cost per segmentation, it may not be sufficient for high-quality
results using the crowd because no single worker may ever
reach the desired quality. Furthermore, the evaluation strategy
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Figure 2. Our segmentation user interface with positive and negative
polygons for the boat sequence (top-left) and the corresponding segmen-
tation overlaid (bottom-right).

assumes some quality threshold decided by the crowd which
is highly subjective as noted in OpenSurfaces [7] and may not
necessarily match the desired quality.

Instead of using pass/fail evaluations of individual segmenta-
tions, we propose a system that is designed to take advantage
of multiple distinct segmentations to achieve a high-quality
final result. Furthermore, we introduce the use of negative an-
notations, which makes it easier for the segmenters to generate
detailed results such as the one shown in Figure 2.

Negative Space Annotation
We developed a polygon-based segmentation interface based
on OpenSurfaces [7] with one major modification: the crowd
workers have the option to use negative polygons that sub-
tract regions from the foreground in addition to the standard,
positive polygons. The idea is motivated by the extensive
use of negative space in rotoscoping [10]. In practice, this
allows higher-quality segmentations as real, complex objects
often contain small regions where the background is visible
as illustrated in Figure 2. Defining complex polygons with
negative annotations introduces a process ambiguity: one can
segment only the positive space by decomposing it into multi-
ple components, or one can segment the whole target as one
positive region that possibly includes several negative compo-
nents. We solve this ambiguity in our merging stage and do
not dictate which strategy to use as both have advantages and
disadvantages.

Merging Segmentations
Given N segmentations of the same object by distinct seg-
menters, we obtain our segmentation result in our review phase.
We assume the existence of an oracle, who can be a single user
or the crowd, who provides us with weights wi that represent
the relative qualities of each segmentation i = 1, . . . ,N.

When dealing with complex segmentations made of multiple
polygons, treating the whole segmentation as a single merging
operation breaks polygons that have no counterpart in the other
segmentations. Thus, we first cluster polygons into minimal
disjoint clusters such that no polygon intersects a polygon
from another cluster. Furthermore, we treat each polygon
class (positive or negative) as a separate layer (foreground or
background) and merge polygons within their cluster and class
separately. This is especially important to make full use of

Figure 3. For an input image (a), we merge multiple segmentations,
such as (b) and (c), so that the end result (d) is able to keep the best
regions of them (shown in green insets) and reject other regions where
they underperform (shown in red insets).

the negative polygons, which our experiments showed to be
an indication of higher quality. Given a specific class layer
and cluster C, we take per-worker sub-segmentations made of
their corresponding polygons, and merge them pixel-wise by
weighted average voting:

M =

[
1

W

N

∑
i=1

wi Mi

]
≥0.5

, (1)

where [ · ] denotes a thresholding operator resulting in a binary
value in {0,1}, Mi ∈C a sub-segmentation of worker i, and
W = ∑i wi the total weight. Finally, we take the union of the
non-overlapping clusters that were generated by a weighted
majority of workers, and merge the foreground layer F with
the background layer H into the full segmentation F ∩¬H.

While our strategy could be suboptimal in isolated cases, it
minimizes the work of the reviewer and already achieves a
significant overall quality improvement over using only one
of the input segmentations, or using a simple voting strategy.
An example merging result can be seen in Figure 3.

Oracle Review
In our implementation, the oracle selecting the individual
weights wi is the requester (or reviewer) who accepts or rejects
results and distributes the money to the crowd workers. The
review process reduces to choosing weights for each of the N
results. Selecting the weights wi = 1+βi serves two purposes:
(i) to select the best result composition with weights wi, and (ii)
to supplement the base task reward with additional financial
bonuses βi (in cents).

When crowdsourcing large segmentation acquisitions, an extra
problem arises with the reward selection. Online platforms
such as Amazon Mechanical Turk require the selection of a
reward to publish a task. This requirement implies that the
requester must evaluate the complexity of the task to choose
an appropriate reward. Instead of relying on some complexity
assessment, we use a low base reward, which is then comple-
mented with financial bonuses βi directly derived from the
merging weights chosen by the oracle during the review. The
base reward encapsulates both the maximal amount of money
we are giving for any segmentation and the minimum reward



Figure 4. Our user interface for crowd workers used in the scribble task
for the propagation ensemble. The propagated segmentation is shown in
yellow, while user scribbles are marked red.

that complex segmentations require to attract enough good
segmenters.

Propagation Ensembles
Given the keyframe segmentations, a standard rotoscoping
pipeline attempts to propagate them to the neighboring frames.
We assume that we have a number of algorithms available to
do this and that they each make different assumptions so that
there are variances among their propagation results.

As it is unlikely for any single segmentation propagation
method to produce satisfactory results for all frames in all sce-
narios, we define a new segmentation merging strategy. The
most straightforward way to merge them is by per-pixel major-
ity voting. This, however, does not include any knowledge of
where different methods likely fail and is only effective when
the majority of the methods perform well. Instead, our strat-
egy relies on weak annotations from the crowd that describe
where the different methods fail. These annotations need not
be precise and thus take less time than full segmentations.

Scribble Annotation
Our interface for this task includes a slider bar to go over the
frames of the video interval and two sets of buttons: one to
vary the opacity of the overlaid segmentation result on the
input frame, and the other to set the size of the scribble brush
as shown in Figure 4.

For each of K different propagations given for a frame, we first
merge the crowd scribbles to create scribble heat maps Sk:

Sk =
1
B

N

∑
i=1

bk
i Sk

i , (2)

where bk
i ∈ [0.25,1] is a weight inversely proportional to the

average brush size used by the worker i for the propagation al-
gorithm k, Sk

i is the corresponding scribble map, and B =∑i bk
i .

The average brush size for the scribble Sk
i is computed as the

average of stroke brush sizes weighted by their corresponding
stroke length.

We then merge the scribble heat maps and the propagation
results Pk to get our segmentation result:

M =

[
K

∑
k=1

Pk ◦Sk

]
≥A

, (3)

where ◦ is a pixelwise operator and A is a pixelwise threshold.
We investigated three different interpretations of our scribble
task, each of which corresponds to a different merging opera-
tion ◦. Each of these has pros and cons which we detail in the
experiment evaluations.

Scribble as Error Correction
We use the scribbles to invert the erroneous regions of segmen-
tation propagations. The merging operator ◦ is defined as

pk ◦qk =

{
pk−qk if pk = 1
qk if pk = 0

, (pxor)

where pk ∈ {0,1} denotes a pixel of the binary mask Pk, qk ∈
[0,1] is from the scribble map Sk, and the threshold A = K/2,
i.e. the inversion only occurs if the majority requires it.

Scribble as Soft Penalty
We use the scribbles to locally penalize a method. This can
be interpreted as annotating the regions where we do not trust
the segmentation propagation. The merging operator ◦ is here
defined as

pk ◦qk = pk(1−qk)α , (wmaj)

where we use the per-pixel threshold A = [∑k(1−qk)]α/2 and
power α = 2 for smoothness.

Scribble as Segmentation Refinement
We use the scribbles to locally overwrite the segmentation. In
this scenario, we add a brush type selection. Users can use
two different brushes to either scribble foreground or back-
ground. When a new brush stroke overlaps with an old one,
the overlap region is replaced so that every pixel of a worker
scribble is either positive (foreground), negative (background)
or undefined (no scribble). In this case, merging consists of
generating two different scribble heat maps Sk

+ and Sk
− for

the foreground respectively the background, and using the
following ◦ merging operator

pk ◦ (qk
+,q

k
−) =


1 if qk

+ = 1
0 if qk

− = 1
pk otherwise

, (2-brushes)

where qk
+ and qk

− are from the corresponding scribble maps
Sk
+ and Sk

− and the threshold is A = K/2.

Figure 5 illustrates a positive example of using either soft
penalty or error correction to merge multiple propagations so
that the result is better than any of the original segmentation
propagations.

Brush Size Regularization
In our interface, we provide three different brush sizes cor-
responding to radii of b ∈ {8,16,32} screen pixels. When
processing the data, the natural normalization consists of scal-
ing the brush sizes to its equivalent in image space, i.e.

bimage = α×bscreen

where α is the ratio of the image width in image space to its
width in screen space. In our setup, we typically had the fixed
ratio α = 1920/800 = 2.4. We consider normalization by a



Figure 5. Example propagations using three different methods: (b)
The first one is more robust but the result is not as smooth. (c, d) The
two methods produce large artifacts, but the results are in general very
smooth; Green overlays represent the propagated segmentations, red the
scribble heat map, and yellow their intersections. The bottom row shows
majority merging (e), and the proposed scribble merging (f) using either
corrective or penalty-based merging as their results are similar.

scaled version of α , i.e. α ′ = f ×α where f , 1 corresponds
to using an image space brush that is either smaller or larger
than what was expected by the user to normalize their input.
In our experiments normalizing to a smaller effective brush
size ( f < 1) leads to better results.

Scribble Outliers
Given the nature of the task, it would be hard to have a mean-
ingful review process for the results. Thus we chose to accept
all results but those that are empty. This means that we have to
deal with potential outliers in our scribble results. Our solution
is to use a modified constant K when thresholding. Instead of
using the number of actual workers for the given frame, we
replace it with

K′ = max
p∈S

K

∑
k=1

pk , (4)

i.e. we use the maximum overlap of all workers as effective
number of valid workers.

EXPERIMENTS
We evaluate our two proposed ensemble methods in the con-
text of a crowdsourced pipeline that follows the conventional
keyframe segmentation and propagation strategy of rotoscop-
ing. The evaluation is done using the DAVIS dataset [38] and
its three metrics: region similarity J, contour accuracy F , and
temporal stability T . The first two metrics J and F respectively
measure the amount of correct pixelwise overlap of segmenta-
tions (commonly referred to as intersection over union), and
the quality of the segmentation boundaries. The values are
each in the interval of [0,1]; the higher the better. The last
metric T measures the temporal smoothness, for which lower
values correspond to better temporal transitions of segmenta-
tions. The dataset consists of 50 short video sequences that
have been annotated by a rotoscoping artist, for a total of 3455
frames at 1080p HD resolution.

The propagation part of the evaluation is based on our crowd-
sourced segmentation results. This differs from the typical
evaluation of semi-supervised and unsupervised methods on
DAVIS in that we cannot assume we have access to the ground
truth since our goal is to have the crowd generate it. Thus,
for all our automated propagations, the training data we use
comes from the results of our crowd workers and not from the
original DAVIS dataset.

All of our experiments were done on the Amazon Mechanical
Turk platform. For all the evaluation figures including those
related to scribbles, we used the pxor merging method with
brush regularization f = 1/2 unless stated otherwise.

We refer the readers to the supplementary material accompany-
ing our paper for screenshots, videos, and the code demonstrat-
ing example sessions using our crowdsourcing user interface.

Segmentation Experiments
Our baseline segmentation is acquired by sending each seg-
mentation to 3 different workers. We initially allowed workers
with a global success rate higher than 50% to work on our
segmentation tasks, and refined our worker group later using a
whitelisting strategy, where workers were assigned a custom
accreditation maintained by us. Our segmentation results have
been generated by a set of 70 best-performing workers.

The instructions of this task contain both (1) generic seg-
mentation instructions including examples of good and bad
segmentations unrelated to the current task, and (2) a sequence-
specific set of instructions that explains what exactly should
be segmented for the current task. This includes sentences
describing the target as well as an example of a good segmen-
tation. Regarding the usage of negative polygons, workers are
shown a preview of the generated segmentation to validate
their work at submission time.

The results are then reviewed by the main user, or the oracle
as mentioned before, and merged according to their chosen
weights. The review is done with an interface that displays
a variety of information including the original image, the
actual segmentation masks, their color-coded differences as
well as the current merged result for the interactively chosen
weights. To enable fair rewards beyond the low base reward of
$0.15, the interface also measures the time taken by a crowd
worker to do the segmentation, based on the timestamp of
each action, and provides correspondingly the lack, or excess,
of reward given the current weights, which directly translates
into bonuses.

To measure the impact of replication, we picked the fifth and
fifth-to-last frames of each sequence, and send them to be
segmented seven more times (thus totaling ten times). We
repeat this once using whitelisting and once not. No review
was done for these extra segmentations.

Lastly, we experimented on automating the review process
of our oracle user by sending a scribble task to annotate the
worker segmentations. The task required scribbles for each
of the three initial segmentation of the fifth and fifth-to-last
frames of each sequence. We then merge the scribbles with
the individual segmentations to get a scribble-based review.



Figure 6. Evolution of the quality with the increasing segmentation replication for two automatic merging strategies: Mean+CLU is our strategy,
whereas Mean indicates the simplistic pixelwise majority. +W represents the variants where the extra seven replications were acquired through the
whitelisted group (thus totaling ten replications). The default extra replications were acquired without accredition requirements. Clustering seems to
always be a better solution, especially for even replication counts, where ties happen. Whitelisting seems to bring a mixed consequence: in our setup,
it did not improve the coverage (J) except for high replication counts, but it did substantially improve the boundary quality (F). The scribble-based
review produces the results that are significant better in terms of the boundary accuracy but not so much for the coverage. However, tt does not reach
the same quality of the oracle reviewer.

Note that we do not distinguish this task from the ordinary
reviewing task: workers see the three segmentations with the
same instructions as for other scribble tasks.

Segmentation Results
We evaluate our proposed ensemble method for keyframe
segmentation, according to the following three criteria: (1) the
usage and efficacy of our novel negative space annotation tool;
(2) the efficacy of merging multiple segmentations in terms of
the quality of the final result, with varying merging strategies
and replication counts; and (3) the possibility of delegating
the role of the oracle user to crowd workers.

Use of Negative Space Annotation
The concept of negative space is standard in composition in
the visual arts. However, to the best of our knowledge, it is
the first time to be used in a crowdsourced interface for high-
quality image segmentation using negative polygons, which
then raises the question: can workers make good use of it?

With all worker segmentations of all sequences counted, crowd
workers created 34,761 polygons, of which 19,985 (57%)
were negative polygons. The number and percentage of neg-
ative polygons vary significantly with sequences. For in-
stance, the simple blackswan sequence of DAVIS required
8 negative polygons out of 172 polygons (4%), whereas the
more complex boat sequence consisted mostly of negative
polygons (4006 of total 4409 polygons, amounting to over
90%; see Figure 2 for an example segmentation). The pres-
ence of negative annotations in a segmentation weakly corre-
lates with its J value being above average for that segmen-
tation (r = 0.17, p < 0.01) and similarly with its F value
(r = 0.26, p < 0.01).

Segmentation Quality
In Table 1, we provide the results for the naive approach of
fully segmenting the video sequences through keyframe seg-
mentation tasks. Two major observations are: (1) the naive full
segmentation does not ensure any temporal coherence—our
workers perform independent segmentations—and thus a high
performance in the temporal stability metric T is not expected;
and (2) segmentations done by workers do not always yield
similar level of segmentation quality around fine details such
as thin occluders and intricate boundaries.

Oracle Automatic
Metrics Clu/Mean Best Clu/Mean SDF Worst

J ↑ 0.917 0.914 0.903 0.875 0.842
F ↑ 0.952 0.939 0.928 0.880 0.879
T ↓ 0.380 0.372 0.359 0.350 0.483

Table 1. Comparisons of different merging strategies for the naive
ground truth acquisition using the DAVIS dataset [38]. Clu/Mean: both
the cluster-based pixelwise majority and the pure pixelwise majority;
Best: the single best-performing segmentation of the batch; SDF: the
average signed distances from the segmentation boundaries; and Worst:
the single worst-performing segmentation. The metrics J, F and T are
defined in the text. For these results, the replication count is set such that
the clustering produces similar results to the direct pixelwise majority.

The table further shows the effect of our merging procedure for
the segmentation task when compared to alternative strategies.
This justifies our use of multiple results instead of a single
one, and also shows that our merging strategy performs better
than the two obvious alternatives: using a uniform average, i.e.
the same weight for every worker’s result; or using the single
best result, i.e. reject all but the best. Note that our method
reduces gracefully to the second alternative in the presence of
an outstanding worker.

Impact of Replication
Figure 6 shows the evolution of the segmentation quality as we
increase the replication count from R = 1 to 10. Odd counts
tend to be better since they avoid ties during majority voting.
Our clustered merging strategy seems to be always better than
the default pixelwise merging and does especially better for
even replication counts. However, clustering does not seem to
improve quality substantially for odd replication counts. The
whitelisting strategy did not improve coverage (J), but did
improve boundary accuracy (F). This suggests that replication
helps with coverage, but higher skills are needed for finer
details.

Delegating the Review to the Crowd
Figure 6 also shows the result of using crowd scribbles instead
of our oracle-based review. It does not seem to produce a
significant coverage (J) improvement to the default pixelwise
averaging, but it does significantly improve the boundary ac-
curacy (F). While the crowd does not reach the level of a
dedicated oracle user, our results show that it is a viable al-
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Task Segmentation Scribble

Frame cost $ 0.15 $ 0.015
Bonus (on average) $ 0.15 -
Replication ×3 ×10
Total cost (on average) $ 0.90 $ 0.15

Table 2. Per-frame, per-worker cost breakdown. Note that a scribble
task consists of multiple frames and methods. Here we report only the
effective cost per frame. The bonus is taken as an average.

ternative if the pipeline is desired to be more automated and
scalable through crowdsourcing.

Propagation Experiments
In order to evaluate our propagation ensemble method, we
make use of two complementary classes of propagation meth-
ods. Note that our method is agnostic to which propagation
algorithm is used and the choices presented below can easily
be replaced with any future propagation algorithm. In our
experiments, the keyframe segmentations are propagated to
the others using two classes of algorithms detailed below.

Optical flow–based propagation: we warp a given segmenta-
tion at frame t to frames t± k using the optical flow computed
between them with large-displacement optical flow [11]. The
flow is computed forward and backward, resulting in two
distinct propagations.

Feature–based classification: to complement the smooth flow-
based approach, we use deep feature classification. We extract
hypercolumn features [23] which we compute with VGG16
available in MatConvNet [43] to train a Gaussian-kernel sup-
port vector machine (SVM) classifier. We include a simple
attention model that consists of applying this method in two
stages. During the first stage, the result is used to localize
the segmentation target. The segmentation is done using the
localization result to focus the classification around the target.

Our evaluation first looks at the total time spent by workers on
each task. We consider the crowdsourced segmentations every
P frames as keyframes, from which we propagate the segmen-
tation using each of the aforementioned methods. We then
collect ten different scribbling results over each propagated
frame using our scribble task. Given timings, we evaluate cost-
effectiveness with varying scribble replications R = 1, . . . ,10.
One task assignment consisted of annotating the three candi-
date propagation intervals (P frames, each for all three prop-
agation candidates). We used uniform keyframe samplings
P = 25,10,5,3 for an unbiased evaluation. The task reward
was $0.015 per single frame scribbling.
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Figure 8. Evolution of the propagated quality with respect to the ac-
quisition cost for different sampling intervals. The successive markers
correspond to merging propagations using pixelwise majority (square),
increasing scribbles replications using wmaj (circles) and full replication
using pxor (cross). The costs are represented as the percentages to the
naive full segmentation cost (star).

To evaluate the impact of the number of propagation methods,
we additionally used three recent propagation techniques: Bi-
lateral Video Segmentation [33] that propagates the segmenta-
tion using the bilateral grid; Video Propagation Networks [26]
that uses a neural network with bilateral convolution layers;
and the unsupervised technique FusionSeg [24] that uses ob-
jectness [25] to propose an object segmentation. Each of
the corresponding propagations (for P = 25,10,5,3) was ac-
quired similarly to the original experiment, but only over the
validation sequences of DAVIS (20 out of 50). Although Fu-
sionSeg [24] does not require a frame to propagate from, we
still created tasks with sequences of corresponding length P
so as to evaluate the impact of task load. Finally, because of
limited space, we only show evaluation figures for the J metric;
see the supplementary for the corresponding F and T figures.

The supplementary material also includes details about the
full timing analysis, justifications for the brush sizes, smaller
regularization, as well as an analysis of the scribble improve-
ments.

Propagation Results
We first consider the time cost of both segmentation and scrib-
ble tasks, and then verify the positive impact of scribbles on
the propagated segmentation quality. We look at how such
increase in quality compares to a denser sampling of frames
for individual segmentation with respect to the cost at different
levels of replication. We then evaluate scribble design com-
ponents including the use of different brush sizes, the impact
of brush regularization, different merging strategies, and the
merging order relative to scribble acquisition. Finally, we
consider the impact of increasing the number of propagation
methods and the task load.

Time Analysis and Time-Cost Tradeoffs
Figure 7 exposes the total cumulative task times using task
prices of Table 2 for an approximate $7.0 hourly rate. The
average per-frame segmentation takes 142.6 seconds, whereas
per-frame per-method scribbles took only 2.5 seconds. The
first obvious result is that our full replication R = 10 for scrib-
bles goes beyond the cost of increasing the replication to the
next P value.

The performance improvement that comes from using the
scribbles during merge is shown in Figure 8, where we per-
formed the evaluation on all 50 sequences of DAVIS [38]
to report the average error metrics at each sampling interval



Mean J Mean F
Initial brush pxor wmaj pxor wmaj

Large brush 0.8083 0.8362 0.8406 0.8556
Small brush 0.7981 0.8270 0.8288 0.8471

Table 3. Impact of the initial brush size. pxor refers to the corrective
merge, and wmaj to the penalty-based merge. The mean values are over
all sequences using a sampling P = 25. It appears that using a larger
initial brush size is beneficial; using a smaller one seems to discourage
some workers.

Figure 9. The joint distribution of brush sizes and corresponding result
qualities (J only; see the supplementary material for F). Brush sizes
included b = 8,16,32. Each scatter point corresponds to the average
brush size of a single scribble, for all sequences with sampling P = 25.

P = 25,10,5,3, with replications R = 1, . . . ,10. The cost of
each step comes from Table 2. Under our settings, cost effi-
ciency was not achieved for most replications and samplings.
We note that the penalty merging wmaj is more stable than
the corrective merging pxor. The former always increases the
quality whereas the later becomes detrimental as the sampling
reaches small intervals (P = 5 and P = 3).

Impact of Brush Size
We evaluated the impact of the initial brush size and put this
in perspective with the distribution of brush sizes that workers
used given the quality of the result they contributed to. We
provided three different brush sizes corresponding to radii of
b ∈ {8,16,32} screen pixels and re-ran the original scribble
experiment at sampling intervals P = 25 with the initial brush
size being the smallest this time in contrast to the largest
being default. Selecting the smallest brush size initially led
to a lower average brush size being used: E[b] = 22.1 when
the initial brush size was b0 = 8 versus E[b] = 26.2 when the
initial brush size was b0 = 32. However, it also led to a slightly
lower quality as summarized in Table 3.

In Figure 9, we show the joint distribution of brush sizes and
corresponding result quality. We can observe three peak con-
centrations of single brush sizes being used for b = 8,16 or 32.
Workers who use a mix of different sizes produce better re-
sults on average (J = 0.82,F = 0.85) than those using a single
brush (J = 0.80,J = 0.83). However, they only accounted for
2.7% of the total scribble work (2,875 out of 105,641 valid
assignments).

Impact of Brush Regularization
Brush regularization seems to have a consistent impact on
the quality as shown in Figure 10. The best results are ob-
tained with regularization f ∈ [0.5,0.8]. Note also that the
penalty-based merging strategy is generally more stable and
the regularization has less impact on it. However, some of
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Figure 10. Impact of the brush regularization f on scribbles at different
samplings P for both the corrective (pxor) and penalty-based merging
(wmaj) strategies. For each sampling value, the best regularization and
method are marked with a star.

Metric
Merging order Regul’n f J F T

After scribbles 1 0.808 0.841 0.499
After scribbles 1/2 0.840 0.869 0.489

Before scribbles 1 0.749 0.818 0.817
Before scribbles 1/2 0.789 0.828 0.694

Mean (no scribble) 0.766 0.782 0.534

Table 4. Impact of the merging order using pxor at P = 25. Acquir-
ing scribbles before merging leads to more information at merging time,
which seems always beneficial. The best values are shown in boldface.
The orange cells are the cases where using scribbles was detrimental.

the best results are from the corrective strategy with a low
regularization f < 1.

Impact of Merging Order
Table 4 shows the effect of merging the multiple candidate
propagations before and after the scribbles are requested.
Merging afterward provides finer annotation capabilities as
we request scribbles for multiple complementary candidates,
which leads to better performance as expected. Interestingly,
applying the scribbles without regularization is detrimental
when applied after merging. This suggests that the scribbles
are not sufficient as a fixing mechanism for a single segmen-
tation. Instead, they can be used as a weighting mechanism
when merging multiple segmentations.

Using Two Different Brushes
Table 5 compares the two-brushes scenario with the single-
brush ones. Brush regularization does not really make sense
since the workers directly interact with the segmentation in
this scenario. In practice, it does not seem to have a big impact.
Both J and F values are slightly lower than the single brush
variants but not by a significant amount. On the contrary, the
temporal stability is better.

Using Additional Propagation Candidates
Figure 11 shows the evolution of the quality with the increas-
ing number of propagation methods used, for interval P = 25.
For the scribble ensembles, we use the corrective merging
strategy with regularization f = 1/2. As expected, using more
methods increases the quality with a diminishing improvement.
Note also that our scribble ensembles always outperform the
default majority voting without scribbles.



Metric
Brush scenario Regul’n f J F T

pxor 1/2 0.840 0.869 0.489
wmaj 1 0.836 0.856 0.468

2-brushes 1/2 0.833 0.850 0.467
2-brushes 1 0.835 0.846 0.431

Table 5. Comparisons of the two-brushes scenario with the two other
single-brush ones. In terms of quality, the results are quite similar al-
though slightly lower, except for the temporal stability T .
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Figure 11. Evolution of the quality with the increasing number of propa-
gation methods. The methods being additionally used are, in an increas-
ing order: LDOF forward, LDOF backward, DF+SVM+Att, FSEG,
BVS, and VPN. We handpicked these combinations of methods such that
their complementedness is maximized. The evolution of the boundary
accuracy (F) is similar and thus only provided in the supplementary ma-
terial.

Impact of Task Load
The longer the scribble sequence, the more work needs to be
done. Although the task reward was linearly proportional to
the sequence length, humans have a limited budget of attention.
Thus we evaluate the amount of work our workers did with
respect to the task load (i.e. sequence length). For most of
our scribble experiments, the sampling interval P is correlated
with the propagation quality, which also leads to a different
amount of work required for the intermediate frames. The
main exception is the FusionSeg [24] method, and thus we
use it to evaluate task load. Table 6 provides the quantitative
results.

First, we analyze the total number of brush stroke vertices.
While this metric contains the work of outlier scribbles, empty
scribbles do not contribute and the amount of single point
scribbles is not significant in comparison to the total num-
ber of vertices (< 1%). Thus it is a reasonable proxy for the
amount of work. The total number of vertices is somewhat sim-
ilar to the average for task loads P = 10,5,3, whereas P = 25
generated about 23% fewer vertices. Beyond the amount of
work, we considered the scribble coverage: (1) true positive
scribble pixels and (2) false positive ones. True positive pixels
are positive scribble pixels that cover propagated segmentation
pixels that do not match the ground truth, whereas false posi-
tive pixels wrongly cover segmentation pixels that match the
ground truth. The brush size was not regularized (i.e. f = 1)
so as to match the worker’s point of view. As expected from
the number of vertices, the counts for P = 25 are also smaller.
However, the ratio of true positive to false negative is the
largest for P = 25. These results hint to the possibility that
P = 25 was too much of a load for some workers, but they also
show that workers who accepted those longer tasks tended to

Sampling P
Metric 25 10 5 3

Stroke vertices 1.0 M 1.5 M 1.3 M 1.3 M
Single vertices 1.6 k 3.6 k 4.3 k 3.9 k

Empty scribbles 9.4 k 9.5 k 6.7 k 8.6 k
True positive 87.9 M 104.1 M 130.6 M 136.0 M
False positive 193.3 M 280.2 M 386.4 M 316.1 M

TP / FP 0.46 0.37 0.34 0.43

Table 6. Quantitative evaluation of the task load for scribbles acquisition.
Sampling P = 25 produced 23% fewer stroke vertices than the average,
but it also achieved the highest precision. Sampling P = 10 produced
17% more stroke vertices, but it resulted in the worst precision.

do a more accurate work. Thus the task load may possibly be
used as a quality filter.

DISCUSSIONS
We further discuss the key findings of our experiments here.

Best Ensemble Method Settings
Segmentation Ensembles: Negative annotation is an impor-
tant tool for high-quality segmentation. High-quality workers
seem to use it extensively. Clustering is not necessary, but it
helps maintain quality when replication counts vary. Higher
replication counts help, but three workers were often sufficient
to create high-quality segmentations. Crowd-based reviews
result in quality improvements, but an oracle reviewer enables
higher-quality segmentation.

Scribble Ensembles: The penalty-based merging strategy wmaj
generates more stable results with little dependency on the
brush regularization or the initial segmentation quality. Our
scribble annotations are not to be considered as fixing mech-
anisms, but as localized weighting mechanisms for merging
multiple segmentation proposals. Using two brushes might
be a good idea, but we do not have conclusive results about it
yet. Using more diverse segmentation proposals always helps
when possible. While using a high task load leads to lower
amounts of work being done, it filters outliers. An optimal
load was achieved with sequences of 25 frames in our experi-
ments. This aligns with findings of Sigurdsson et al. [40] that
larger loads may be preferable.

Limitations
Our main limitation is the cost overhead of the scribble task
given the amount of work they involve. While our scribbles
can increase the quality of the propagation ensembles and indi-
vidually require much less time than segmentations, they still
do so at a cost that is larger than increasing the segmentation
sampling density, for a quality increase that is not as big. The
main issue is that we apply them on every frame, resulting
in a large factor (P = 25 leads to approximately 24×3 = 72
scribbles per keyframe). An interesting avenue for future work
is to measure where scribbles are most needed so as to reduce
the number of scribbles to segmentations.

Our review processes could be improved, notably about out-
liers. A common filter consists of Gold Standard tests. It re-
quires defining good and bad results, which is time-consuming
and requires a mean to detect bad segmentations or scribbles,
which we do not have. Better merging strategies would in-
volve estimating a confidence profile for the workers and their



Metric
Method J F T W

LDOF 0.760 0.749 0.250 0.204
DF+SVM 0.764 0.782 0.250 0.192

DF+SVM+Att 0.822 0.823 0.317 0.198

Table 7. Comparisons between the scores W evaluated by crowd workers
and the J, F , and T metrics, as in Table 1. All values are averages over all
sequences of the DAVIS dataset. The score W is defined as the average
number of positive evaluations for a frame segmentation.

skills [15]. Specifically, we could use superpixels to cluster
brush strokes [12] and further evaluate worker confidence.

Do Workers Agree with Our Metrics?
We initially considered the task of deciding which of multiple
propagation strategies is the best using the crowd. For a given
propagation interval, we asked workers to select, for every
propagation method, whether each frame propagation was
good or bad after having shown them a selection of good and
bad propagation results. The results of that experiment were
not conclusive, but they are interesting as they seem to go
against our validation metrics and thus we detail these here.

The propagation method using deep feature classification tends
to produce good results in terms of pixel coverage, but the
boundaries exhibit pixelation artifacts as illustrated in Figure 5.
In this initial experiment, crowd workers often claimed (to our
surprise) that the pixelation artifacts were worse than other
results which are pixel-wise less accurate but have smoother
boundaries (i.e. the optical flow based methods). This is
detailed in Table 7, where we present evaluation scores W ,
measured as the average number of positive evaluations, over
all DAVIS sequences propagated with our methods based on
optical flow (a bidirectional variant selecting only the best out
of both directions) and on deep feature classification (with and
without the attention model). In practice, we always use the
attention model, but we highlight that even without attention
model, the propagation with deep features is more accurate
according to the three metrics. Workers seemed to focus on
the smoothness artifacts (which are stronger without attention
model). While the relative preference (higher W ) of LDOF
over both other methods (DF+SVM±Att) is not necessarily
significant, the results suggest that the human decision is not
well correlated with the current metrics either. This calls for
metrics that would match human perception better.

Segmentation Propagation for Video Matting
Our scribble-based propagation ensemble can easily be used
for other application scenarios. We demonstrate it with an
example of trimap propagation. In movie post-production, a
common practice is the cut-out of an object from the back-
ground with proper opacity, subsequently composited with a
novel background. Among typical techniques used for such
composition are green-screen keying for constrained back-
ground (hence green-screen) and natural image matting for
more demanding cases of unconstrained background (hence
natural image). The typical input for matting is a trimap, which
defines the opaque foreground and background regions, as well
as the transition regions in-between, as seen in Figure 12. Gen-
erating trimaps for every frame in a video is a tedious and a
time-consuming task [3, 46]. Our ensemble method can be

Figure 12. Given the trimaps for the first and last frames (rightmost
and leftmost columns), the trimaps for the whole video can be generated
using our method (second row). The trimaps are fed to a natural matting
method [2] to get the foreground layer (third row), which is then used to
generate a novel composition (fourth row). Note that the composited
results are color graded. Images courtesy of (CC) Blender Foundation
— mango.blender.org, Flickr user chrstphre and Aksoy et al. [4].

adapted to generate high-quality trimaps quickly for a video
given the trimaps for the first and last frames.

We propagate the foreground, which is a conservative region
that only includes opaque foreground regions, and the non-
background part, which includes the foreground together with
the opacity transition regions, separately using the proposed
pipeline. We combine the two results in the end to get our final
trimaps. In order to show an example of the full application
scenario, we generated from these trimaps the foreground layer
with semi-opacity properly considered, using information-flow
matting [2], and composited them onto a novel background as
presented in Figure 12.

CONCLUSION
We introduced two novel crowd-guided ensemble methods that
combine multiple inputs from the crowd as well as automated
algorithms to generate final segmentations that are better than
any of their individual components. First, our results show
that we can acquire image segmentations of higher quality by
combining the work of multiple individuals. They confirm that
negative polygon annotations are effective for crowdsourced
segmentation. They also show that using our scribble-based
ensemble method, we can delegate the review process of our
oracle to the crowd to a certain extent. In practice, the oracle
may well be required because rotoscoping work is often tied to
some artistic decision that requires human validation. On the
propagation side, our scribble-based ensembles are promising
given their flexibility and the potential quality increase over
naive ensembles, although they do not achieve cost efficiency
compared to increase segmentation rates. Finally, the web
interfaces, tools, and data of our experiments will be made
public for future research.
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2. Yağız Aksoy, Tunç Ozan Aydın, and Marc Pollefeys.
2017. Designing Effective Inter-Pixel Information Flow
for Natural Image Matting. In Proc. CVPR.
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