
90 communications of the acm | november 2012 | vol. 55 | no. 11

research highlights

doi:10.1145/2366316.2366339

The Frankencamera: An
Experimental Platform for
Computational Photography
By Andrew Adams, David E. Jacobs, Jennifer Dolson, Marius Tico, Kari Pulli, Eino-Ville Talvala, Boris Ajdin, Daniel Vaquero,
Hendrik P.A. Lensch, Mark Horowitz, Sung Hee Park, Natasha Gelfand, Jongmin Baek, Wojciech Matusik, and Marc Levoy

Abstract
Although there has been much interest in computational
photography within the research and photography com-
munities, progress has been hampered by the lack of a por-
table, programmable camera with sufficient image quality
and computing power. To address this problem, we have
designed and implemented an open architecture and appli-
cation programming interface (API) for such cameras: the
Frankencamera. It consists of a base hardware specification,
a software stack based on Linux, and an API for C++. Our ar-
chitecture permits control and synchronization of the sen-
sor and image processing pipeline at the microsecond tim-
escale, as well as the ability to incorporate and synchronize
external hardware like lenses and flashes. This paper speci-
fies our architecture and API, and it describes two reference
implementations we have built. Using these implementa-
tions, we demonstrate several computational photography
applications: high dynamic range (HDR) viewfinding and
capture, automated acquisition of extended dynamic range
panoramas, foveal imaging, and inertial measurement unit
(IMU)-based hand shake detection. Our goal is to standardize
the architecture and distribute Frankencameras to research-
ers and students, as a step toward creating a community of
photographer-programmers who develop algorithms, appli-
cations, and hardware for computational cameras.

1. INTRODUCTION
Computational photography refers broadly to sensing strat-
egies and algorithmic techniques that enhance or extend
the capabilities of digital photography. Representative tech-
niques include high dynamic range (HDR) imaging, flash/
no-flash imaging, coded aperture and coded exposure imag-
ing, panoramic stitching, digital photomontage, and light
field imaging.18

Although interest in computational photography has
steadily increased among graphics and vision research-
ers, few of these techniques have found their way into
commercial cameras. One reason is that cameras are
closed platforms. This makes it hard to incrementally
deploy these techniques, or for researchers to test them
in the field. Ensuring that these algorithms work robustly
is therefore difficult, and so camera manufacturers are
reluctant to add them to their products. For example,
although HDR imaging has a long history,5, 13 the literature
has not addressed the question of automatically deciding

which exposures to capture, that is, metering for HDR. As
another example, while many of the drawbacks of flash
photography can be ameliorated using flash/no-flash
imaging,7, 15 these techniques produce visible artifacts in
many photographic situations.6 Since these features do
not exist in actual cameras, there is no strong incentive to
address their artifacts.

Particularly frustrating is that even in platforms like
smartphones, which encourage app creation and have
increasingly capable imaging hardware, the programming
interface to the imaging system is highly simplified, mimick-
ing the physical interface of a point-and-shoot camera. This
is a logical interface for the manufacturer to include, since
it is complete for the purposes of basic camera operations
and stable over many device generations. Unfortunately, it
means that in these systems it is not possible to create imag-
ing applications that experiment with most areas of compu-
tational photography.

To address this problem, we describe a camera architec-
ture and application programming interface (API) flexible
enough to implement most of the techniques proposed in
the computational photography literature. We believe that
the architecture is precise enough that implementations
can be built and verified for it, yet high-level enough to allow
for evolution of the underlying hardware and portability
across camera platforms. Most importantly, we have found
it easy to program for.

In the following section, we review previous work in this
area, which motivates an enumeration of our design goals at
the beginning of Section 3. We then describe our camera
architecture in more detail. Our two reference implementa-
tions are shown in Figure 1. The first is the F2, which is com-
posed of off-the-shelf components mounted in a laser-cut
acrylic case. It is designed for extensibility. Our second plat-
form is a Nokia N900 with a custom software stack. While
less customizable than the F2, it is smaller, lighter, and
readily available in large quantities. It demonstrates that
current smartphones often have hardware components with
more capabilities than their APIs expose. With these imple-
mentations in mind, we describe how to program for our
architecture in Section 4. To demonstrate the capabilities
of the architecture and API, we show several computational

The original version of this paper was published in ACM
Trans. Graph. 29, 4 (2010).

november 2012 | vol. 55 | no. 11 | communications of the acm 91

2.2. Smartphones
Smartphones are programmable cell phones that allow
and even encourage third-party applications. The newest
smartphones are capable of capturing still photographs
and videos with quality comparable to point-and-shoot
cameras. These models contain numerous input and out-
put devices (e.g., touchscreen, audio, buttons, GPS, com-
pass, accelerometers), and are compact and portable.
While these systems seem like an ideal platform for a
computational camera, they provide limited interfaces to
their camera subsystems. Neither Android nor Apple’s iOS
devices allow application control over absolute exposure
time, or retrieval of raw sensor data—much less the abil-
ity to stream full-resolution images at the maximum rate
permitted by the sensor. In fact, they typically provide less
control of the camera than a DSLR SDK. This lack of control
makes these devices useful for only a narrow range of com-
putational photography applications. Despite these limita-
tions, the iPhone app store has several hundred third-party
applications that use the camera. This confirms our belief
that there is a great interest in extending the capabilities
of traditional cameras, an interest we hope to support and
encourage with our architecture.

2.3. Smart cameras
Smart cameras are image sensors combined with local
processing, storage, or networking, and are generally
used as embedded computer vision systems.3, 22 These
cameras provide fairly complete control over the imag-
ing system, with the software stack implementing frame
capture, low-level image processing, and vision algo-
rithms such as background subtraction, object detection,
or object recognition. Example research systems are the
CMUcam,20 Cyclops,16 MeshEye,8 and the Philips wireless
smart camera motes.11 Commercial systems include the
National Instruments 17XX, Sony XCI-100, and the Basler
eXcite series.

The main limitation of these systems is that they are not
complete cameras. Most are tethered, few support synchro-
nization with other I/O devices, and none contain a view-
finder or a shutter button. Augmenting these devices with
a separate display complicates the system and introduces
additional latency.

Our Frankencamera platforms attempt to provide every-
thing needed for a practical computational camera: full
access to the imaging system like a smart camera, a full user
interface with viewfinder and I/O interfaces like a smart-
phone, and the ability to be taken outdoors, untethered, like
a consumer camera.

3. THE FRANKENCAMERA ARCHITECTURE
Informed by our experiences programming for (and teaching
with) smartphones, point-and-shoots, and DSLRs, we pro-
pose the following set of requirements for a Frankencamera:

1.	 Is handheld, self-powered, and untethered. This lets
researchers take the camera outdoors and face real-
world photographic problems.

2.	 Has a large viewfinder with a high-quality touch-

photography applications that cannot easily be implemen
ted on current cameras (Section 5).

2. PRIOR WORK
A digital camera is a complex embedded system, spanning
many fields of research. We limit our review of prior work to
camera platforms rather than their constituent algorithms,
to highlight why we believe a new architecture is needed to
advance the field of computational photography.

2.1. Consumer cameras
Although improvements in the features of digital single-
lens reflex cameras (DSLRs) have been largely incremen-
tal, point-and-shoot camera manufacturers are steadily
expanding the range of features available on their cameras.
Unfortunately, the camera software cannot be modified,
and thus no additional features can be explored by the
research community. Software development kits (SDKs) by
manufacturers such as Canon and Nikon require tether-
ing the camera to a computer, and provide no more control
than the normal user interface.

Though the firmware in these cameras is always propri-
etary, several groups have successfully reverse-engineered
the firmware for some Canon cameras. In particular, the
Canon Hack Development Kit4 nondestructively replaces
the original firmware on a wide range of Canon point-and-
shoot cameras. Photographers can then script the camera,
adding features such as custom burst modes, motion-
triggered photography, and time-lapse photography.
Similarly, the Magic Lantern project12 provides enhanced
firmware for Canon 5D Mark II DSLRs. While these projects
remove both the need to attach a PC to the camera and the
problem of latency, they yield roughly the same level of con-
trol as the manufacturer SDKs: the lower levels of the cam-
era are still a black box.

Figure 1. Two implementations of the Frankencamera architecture:
The custom-built F2 (left)—portable and self-powered, best for
projects requiring flexible hardware; and the Nokia N900 (right)
with a modified software stack—a compact commodity platform
best for rapid development and deployment of applications to
a large audience.

92 communications of the acm | november 2012 | vol. 55 | no. 11

research highlights

screen to enable experimentation with camera user
interfaces.

3.	 Is easy to program. To that end, it should run a stan-
dard operating system, and be programmable using
standard languages, libraries, compilers, and debug-
ging tools.

4.	 Has the ability to manipulate sensor, lens, and camera
settings on a per-frame basis at video rate, so we can
request bursts of images with unique capture parame-
ters for each image.

5.	 Labels each returned frame with the camera settings
used for that frame, to allow for proper handling of the
data produced by requirement 4.

6.	 Allows access to raw pixel values at the maximum
speed permitted by the sensor interface. This means
uncompressed, undemosaicked pixels.

7.	 Provides enough processing power in excess of what is
required for basic camera operation to allow for the
implementation of nearly any computational photog-
raphy algorithm from the recent literature, and enough
memory to store the inputs and outputs (often a burst
of full-resolution images).

8.	 Allows standard camera accessories to be used, such as
external flash or remote triggers, or more novel devices,
such as GPS, inertial measurement units (IMUs), or
experimental hardware. It should make synchronizing
these devices to image capture straightforward.

Figure 2 illustrates our model of the imaging hardware in
the Frankencamera architecture. It is general enough to
cover most platforms so that it provides a stable interface
to the application designer, yet precise enough to allow for
the low-level control needed to achieve our requirements. It
encompasses the image sensor, the fixed-function imaging

pipeline that deals with the resulting image data, and other
photographic devices such as the lens and flash.

3.1. The image sensor
One important characteristic of our architecture is that the
image sensor is treated as stateless. Instead, it is a pipeline
that transforms requests into frames. The requests specify
the configuration of the hardware necessary to produce
the desired frame. This includes sensor configuration like
exposure and gain, imaging processor configuration like
output resolution and format, and a list of device actions
that should be synchronized to exposure, such as if and
when the flash should fire.

The frames produced by the sensor are queued and
retrieved asynchronously by the application. Each one
includes both the actual configuration used in its capture,
and also the request used to generate it. The two may differ
when a request could not be achieved by the underlying hard-
ware. Accurate labeling of returned frames (requirement 5) is
essential for algorithms that use feedback loops like autofo-
cus and metering.

As the manager of the imaging pipeline, a sensor has a
somewhat privileged role in our architecture compared to
other devices. Nevertheless, it is straightforward to express
multiple-sensor systems. Each sensor has its own internal
pipeline and abstract imaging processor (which may be
implemented as separate hardware units, or a single time-
shared unit). The pipelines can be synchronized or allowed
to run independently. Simpler secondary sensors can alter-
natively be encapsulated as devices (described later), with
their triggering encoded as an action slaved to the expo-
sure of the main sensor.

3.2. The imaging processor
The imaging processor sits between the raw output of the
sensor and the application processor, and has two roles.
First, it generates useful statistics from the raw image data,
including a small number of histograms over programma-
ble regions of the image, and a low-resolution sharpness
map to assist with autofocus. These statistics are attached to
the corresponding returned frame.

Second, the imaging processor transforms image data
into the format requested by the application, by demosaick-
ing, white-balancing, resizing, and gamma correcting as
needed. As a minimum we only require two formats: the raw
sensor data (requirement 6) and a demosaicked format of
the implementation’s choosing. The demosaicked format
must be suitable for streaming directly to the platform’s dis-
play for use as a viewfinder.

The imaging processor performs both these roles in
order to relieve the application processor of essential image
processing tasks, allowing application processor time to
be spent in the service of more interesting applications
(requirement 7). Dedicated imaging processors are able to
perform these roles at a fraction of the compute and energy
cost of a more general application processor.

Indeed, imaging processors tend to be fixed-functional-
ity for reasons of power efficiency, and so these two statis-
tics and two output formats are the only ones we require in

Figure 2. The Frankencamera abstract architecture. The architecture
consists of an application processor, a set of photographic devices
such as flashes or lenses, and one or more image sensors, each with
a specialized image processor. A key aspect of this system is that
image sensors are pipelined. The architecture does not dictate the
number of stages; here we show a typical system with four frames in
flight at a time.

Image Sensor

Lens

Metadata

Actions

Flash

...

Application
Processor

Configure

1

Expose

2

Readout

3

Image
Processing

Statistics
Collection

Imaging Processor

4

+

Devices

Shot Requests

Images and
Statistics

november 2012 | vol. 55 | no. 11 | communications of the acm 93

4. PROGRAMMING THE FRANKENCAMERA
Developing for a Frankencamera is similar to developing
for any Linux device. One writes standard C++ code, com-
piles it with a cross-compiler, and then copies the result-
ing binary to the device. Programs can then be run over
ssh, or launched directly on the device’s screen. Standard
debugging tools such as gdb and strace are available. To cre-
ate a user interface, one can use any Linux UI toolkit. We
typically use Qt and provide code examples written for Qt.
OpenGL ES 2.0 is available for hardware-accelerated graph-
ics, and regular POSIX calls can be used for networking, file
I/O, synchronization primitives, and so on. If all this seems
unsurprising, then that is precisely our aim.

Programmers and photographers interact with our archi-
tecture using the “FCam” API. We now describe the API’s
basic concepts illustrated by example code.

4.1. Shots
The four basic concepts of the FCam API are shots, sensors,
frames, and devices. We begin with the shot. A shot is a bun-
dle of parameters that completely describes the capture
and post-processing of a single output image. A shot speci-
fies sensor parameters such as gain and exposure time (in
microseconds). It specifies the desired output resolution,
format (raw or demosaicked), and memory location into
which to place the image data. It also specifies the configu-
ration of the fixed-function statistics generators by speci-
fying over which regions histograms should be computed
and at what resolution a sharpness map should be generated.
A shot also specifies the total time between this frame and
the next. This must be at least as long as the exposure time
and is used to specify frame rate independently of exposure
time. Shots specify the set of actions to be taken by devices
during their exposure (as a standard STL set). Finally, shots
have unique ids auto-generated on construction, which assist
in identifying returned frames.

The example code below configures a shot representing
a VGA resolution frame, with a 10 ms exposure time, a frame
time suitable for running at 30 frames per second, and a sin-
gle histogram computed over the entire frame:

Shot shot;
shot.gain = 1.0;
shot.exposure = 10000;
shot.frameTime = 33333;
shot.image = Image (640, 480, UYVY);
shot.histogram.regions = 1;
shot.histogram.region[0] = Rect (0, 0, 640, 480);

4.2. Sensors
After creation, a shot can be passed to a sensor in one of the two
ways—by capturing it or by streaming it. If a sensor is told to cap-
ture a configured shot (by calling sensor.capture(shot)),
it pushes that shot into a request queue at the top of the imag-
ing pipeline (Figure 2) and returns immediately.

The sensor manages the entire pipeline in the back-
ground. The shot is issued into the pipeline when it reaches
the head of the request queue, and the sensor is ready to

our current architecture. We anticipate that in the longer
term image processors will become more programmable,
and we look forward to being able to replace these require-
ments with a programmable set of transformation and
reduction stages. On such a platform, for example, one
could write a “camera shader” to automatically extract and
return feature points and descriptors with each frame to
use for alignment, or structure-from-motion applications.

3.3. Devices
Cameras are much more than an image sensor. They also
include a lens, a flash, and other assorted devices. In
order to facilitate use of novel or experimental hardware,
the requirements that the architecture places on devices
are minimal.

Devices are controllable independently of a sensor
pipeline by whatever means are appropriate to the device.
However, in many applications the timing of device actions
must be precisely coordinated with the image sensor to
create a successful photograph. The timing of a flash firing
in second-curtain sync mode must be accurate to within a
millisecond. More demanding computational photogra-
phy applications, such as coded exposure photography,17
require even tighter timing precision.

To this end, devices may also declare one or more
actions that they can take synchronized to exposure.
Programmers can then schedule these actions to occur at
a given time within an exposure by attaching the action to
a frame request. Devices declare the latency of each of their
actions, and receive a callback at the scheduled time minus
the latency. In this way, any event with a known latency can
be accurately scheduled.

Devices may also tag returned frames with meta-
data describing their state during that frame’s exposure
(requirement 5). Tagging is done after frames leave the
imaging processor, so this requires devices to keep a log of
their recent state.

Some devices generate asynchronous events, such as
when a photographer manually zooms a lens, or presses
a shutter button. These are time-stamped and placed in
an event queue, to be retrieved by the application at its
convenience.

3.4. Discussion
While this pipelined architecture is simple, it expresses the
key constraints of real camera systems, and it provides fairly
complete access to the underlying hardware. Current cam-
era APIs model the hardware in a way that mimics the physi-
cal camera interface: the camera is a stateful object, which
makes blocking capture requests. This view only allows one
active request at a time and reduces the throughput of a
camera system to the reciprocal of its latency—a fraction of
its peak throughput. Streaming modes, such as those used
for electronic viewfinders, typically use a separate interface,
and are mutually exclusive with precise frame level control
of sensor settings, as camera state becomes ill-defined in
a pipelined system. Using our pipelined model of a cam-
era, we can implement our key architecture goals with a
straightforward API.

94 communications of the acm | november 2012 | vol. 55 | no. 11

begin configuring itself for the next frame. If the sensor is
ready, but the request queue is empty, then a bubble nec-
essarily enters the pipeline. The sensor cannot simply
pause until a shot is available, because it has several other
pipeline stages; there may be a frame currently exposing
and another currently being read out. Bubbles configure
the sensor to use the minimum frame time and exposure
time, and the unwanted image data produced by bubbles is
silently discarded.

Bubbles in the imaging pipeline represent wasted time
and make it difficult to guarantee a constant frame rate for
video applications. In these applications, the imaging pipe-
line must be kept full. To prevent this responsibility from
falling on the API user, the sensor can also be told to stream
a shot. A shot to be streamed is copied into a holding slot
alongside the request queue. Then whenever the request
queue is empty, and the sensor is ready for configuration,
a copy of the contents of the holding slot enters the pipe-
line instead of a bubble. Streaming a shot is done using
sensor.stream(shot).

Sensors may also capture or stream vectors of shots, or
bursts, in the same way that they capture or stream shots.
Capturing a burst enqueues those shots at the top of the pipe-
line in the order given and is useful, for example, to capture
a full high-dynamic-range stack in the minimum amount of
time. As with a shot, streaming a burst causes the sensor to
make an internal copy of that burst, and atomically enqueue
all of its constituent shots at the top of the pipeline whenever
the sensor is about to become idle. Thus, bursts are atomic—
the API will never produce a partial or interrupted burst. The
following code makes a burst from two copies of our shot,
doubles the exposure of one of them, and then uses the sen-
sor’s stream method to create frames that alternate exposure
on a per-frame basis at 30 frames per second. The ability to
stream shots with varying parameters at video rate is vital for
many computational photography applications, and hence
was one of the key requirements of our architecture. It will be
heavily exploited by our applications in Section 5.

std : : vector<Shot> burst(2);
burst[0] = shot;
burst[1] = shot;
burst[1].exposure = burst[0].exposure*2;
sensor.stream(burst);

To update the parameters of a shot or burst that is currently
streaming (e.g., to modify the exposure as the result of a meter-
ing algorithm), one merely modifies the shot or burst and calls
stream again. Since the shot or burst in the internal holding
slot is atomically replaced by the new call to stream, no partially
updated burst or shot is ever issued into the imaging pipeline.

4.3. Frames
On the output side, the sensor produces frames, retrieved
from a queue of pending frames via the getFrame
method. This method is the only blocking call in the core
API. A frame contains image data, the output of the sta-
tistics generators, the precise time at which the exposure

began and ended, the actual parameters used in its cap-
ture, and the requested parameters in the form of a copy
of the shot used to generate it. If the sensor was unable
to achieve the requested parameters (e.g., if the requested
frame time was shorter than the requested exposure time),
then the actual parameters will reflect the modification
made by the system.

Frames can be identified by the id field of their shot.
Being able to reliably identify frames is another of the key
requirements for our architecture. The following code
displays the longer exposure of the two frames speci-
fied in the burst above, but uses the shorter of the two
to perform metering. The functions displayImage and
metering are hypothetical functions that are not part of
the API.

while (1) {
    Frame frame = sensor.getFrame();
   if (frame.shot().id == burst[1].id) {
   displayImage(frame.image);
   }   else if (frame.shot().id == burst[0].id) {
   unsigned newExposure = metering(frame);
   burst[0].exposure = newExposure;
   burst[1].exposure = newExposure*2;
   sensor.stream(burst);
   }
}

In simple programs, it is typically not necessary to check
the ids of returned frames, because our API guarantees that
exactly one frame comes out per shot requested, in the same
order. Frames are never duplicated or dropped entirely.
If image data is lost or corrupted due to hardware error,
a frame is still returned (possibly with statistics intact), with
its image data marked as invalid.

4.4. Devices
In our API, each device is represented by an object with
methods for performing its various functions. Each device
may additionally define a set of actions, which are used to
synchronize these functions to exposure, and a set of tags
representing the metadata attached to returned frames.
While the exact list of devices is platform-specific, the API
includes abstract base classes that specify the interfaces to
the lens and the flash.

The lens can be directly asked to initiate a change to
any of its three parameters: focus (measured in diopters),
focal length, and aperture, with the methods setFocus,
setZoom, and setAperture. These calls return immedi-
ately, and the lens starts moving in the background. For cases
in which lens movement should be synchronized to expo-
sure, the lens defines three actions to do the same. Each call
has an optional second argument that specifies the speed
with which the change should occur. Additionally, each
parameter can be queried to see if it is currently changing,
what its bounds are, and its current value. The following code
moves the lens from its current position to infinity focus over
the course of 2s.

research highlights

november 2012 | vol. 55 | no. 11 | communications of the acm 95

Lens lens;
float speed = (lens.getFocus()-lens.
farFocus() )/2;
lens.setFocus(lens.farFocus(), speed);

A lens tags each returned frame with the state of each of its
three parameters during that frame. Tags can be retrieved
from a frame like so:

Frame frame = sensor.getFrame();
Lens :: Tags *tags = frame->tags(&lens);
cout << “The lens was at: ” << tags->focus;

The flash has a single method that tells it to fire with a speci-
fied brightness and duration, and a single action that does
the same. It also has methods to query bounds on brightness
and duration. Flashes with more capabilities (such as the
strobing flash in Figure 3) can be implemented as sub-
classes of the base flash class. The flash tags each returned
frame with its state, indicating whether it fired during that
frame, and if so with what parameters.

The following code example adds an action to our shot
to fire the flash briefly at the end of the exposure (second-
curtain sync). The results of a similar code snippet run on
the F2 can be seen in Figure 3.

Flash flash;
Flash :: FireAction fire(&flash);
fire.brightness = flash.maxBrightness();
fire.duration = 5000;
fire.time = shot.exposure - fire.duration;
shot.actions.insert(&fire);

Other devices can be straightforwardly incorporated into
the API, allowing easy management of the timing of their

actions. One merely needs to inherit from the Device base
class, add methods to control the device in question, and
then define any appropriate actions, tags, and events. This
flexibility is critical for computational photography, in
which it is common to experiment with novel hardware that
affects image capture.

4.5. Implementation
In our current API implementations, apart from fixed-
function image processing, FCam runs entirely on the ARM
CPU in the OMAP3430, using a small collection of user-space
threads and modified Linux kernel modules. Our system is
built on top of Video for Linux 2 (V4L2)—the standard Linux
kernel video API. V4L2 treats the sensor as stateful with no
guarantees about timing of parameter changes. To provide
the illusion of a stateless sensor processing stateful shots, we
use several real-time-priority threads to manage updates to
image sensor parameters, readback of image data and meta-
data, and device actions synchronized to exposure.

Our image sensor drivers are standard V4L2 sensor driv-
ers with one important addition. We add controls to specify
the time taken by each individual frame, which are imple-
mented by adjusting the amount of extra vertical blanking
in sensor readout.

4.6. Discussion
Our goals for the API were to provide intuitive mechanisms
to precisely manipulate camera hardware state over time,
including control of the sensor, fixed-function processing,
lens, flash, and any associated devices. We have accom-
plished this in a minimally surprising manner, which should
be a key design goal of any API. The API is limited in scope
to what it does well, so that programmers can continue to
use their favorite image processing library, UI toolkit, file
I/O, and so on. Nonetheless, we have taken a “batteries
included” approach, and made available control algorithms
for metering and focus, image processing functions to cre-
ate raw and JPEG files, and example applications that dem-
onstrate using our API with the Qt UI toolkit and OpenGL ES.

Implementing the API on our two platforms required
a shadow pipeline of in-flight shots, managed by a collec-
tion of threads, to fulfill our architecture specification. This
makes our implementation brittle in two respects. First, an
accurate timing model of image sensor and imaging pro-
cessor operation is required to correctly associate output
frames with the shot that generated them. Second, determin-
istic guarantees from the image sensor about the latency of
parameter changes are required, so that we can configure the
sensor correctly. In practice, there is a narrow time window
in each frame during which sensor settings may be adjusted
safely. To allow us to implement our API more robustly,
future image sensors should provide a means to identify
every frame they produce on both the input and output
sides. Setting changes could then be requested to take effect
for a named future frame. This would substantially reduce
the timing requirements on sensor configuration. Image
sensors could then return images tagged with their frame
id (or even the entire sensor state), to make association of
image data with sensor state trivial.

Figure 3. The Frankencamera API provides precise timing control
of secondary devices like the flash. Here, two Canon flash units
were mounted on an F2, one set to strobe and one to fire once
at end of the exposure.

96 communications of the acm | november 2012 | vol. 55 | no. 11

research highlights

unlikely. Indeed, Joshi et al.9 show how to deblur the cap-
tured images using the motion path (as recorded by the IMU)
as a prior.

5.2. Foveal imaging
CMOS image sensors are typically bandwidth-limited
devices that can expose pixels faster than they can be read
out into memory. Full-sensor-resolution images can only be
read out at a limited frame rate: roughly 12 fps on our plat-
forms. Low-resolution images, produced by downsampling
or cropping on the sensor, can be read at a higher-rate: up to
90 fps on the F2. Given that we have a limited pixel budget, it
makes sense to only capture those pixels that are useful mea-
surements of the scene. In particular, image regions that are
out-of-focus or oversaturated can safely be recorded at low
spatial resolution, and image regions that do not change
over time can safely be recorded at low temporal resolution.

Foveal imaging uses a streaming burst, containing shots
that alternate between downsampling and cropping on the
sensor. The downsampled view provides a 640 × 480 view of
the entire scene, and the cropped view provides a 640 × 480
inset of one portion of the scene, analogously to the human
fovea (Figure 5). The fovea can be placed on the center of
the scene, moved around at random in order to capture
texture samples, or programmed to preferentially sample
sharp, moving, or well-exposed regions. For now, we have
focused on acquiring the data, and present results pro-
duced by moving the fovea along a prescribed path. In the
future, we intend to use this data to synthesize full-resolu-
tion high-framerate video, similar to the work of Bhat et al.2

Downsampling and cropping on the sensor is a capabil-
ity of the Aptina sensor in the F2 not exposed by the base
API. To access this, we use derived versions of the Sensor,
Shot, and Frame classes specific to the F2 API implemen-
tation. These extensions live in a sub-namespace of the
FCam API. In general, this is how FCam handles platform-
specific extensions.

5. APPLICATIONS
We now describe a number of applications of the Franken-
camera architecture and API to concrete problems in pho-
tography. Most run on either the N900 or the F2, though
some require hardware specific to one platform or the
other. These applications are representative of the types
of in-camera computational photography our architecture
enables, and several are also novel applications in their own
right. They are all either difficult or impossible to implement
on existing platforms, yet simple to implement under the
Frankencamera architecture.

5.1. IMU-based lucky imaging
Long-exposure photos taken without use of a tripod are usu-
ally blurry, due to natural hand shake. However, hand shake
varies over time, and a photographer can get “lucky” and
record a sharp photo if the exposure occurs during a period
of stillness (Figure 4). Our “Lucky Imaging” application uses
an experimental Nokia three-axis gyroscope affixed to the
front of the N900 to detect hand shake. Utilizing a gyroscope
to determine hand shake is computationally cheaper than
analyzing full resolution image data, and will not confuse
blur caused by object motion in the scene with blur caused
by hand shake. We use an external gyroscope because the
internal accelerometer in the N900 is not sufficiently accu-
rate for this task.

To use the gyroscope with the FCam API, we created a
device subclass representing a three-axis gyroscope. The
gyroscope object then tags frames with the IMU measure-
ments recorded during the image exposure. The application
streams full-resolution raw frames, saving them to storage
only when their gyroscope tags indicate low motion during
the frame in question. The ease with which this external
device could be incorporated is one of the key strengths of
our architecture.

This technique can be extended to longer exposure times
where capturing a “lucky image” on its own becomes very

Figure 4. Lucky Imaging. An image stream and three-axis gyroscope data for a burst of three images with 0.5s exposure times. The FCam API
synchronizes the image and motion data, and only the frames determined to have low motion are saved to storage.

Im
ag

es
G

yr
os

co
pe

 D
at

a

november 2012 | vol. 55 | no. 11 | communications of the acm 97

off-camera, so that no on-line preview of this capture pro-
cess is available.

In order to address these issues, we implemented an
application for capturing and generating panoramas
using the FCam API on the N900. In the capture interface,
the viewfinder alignment algorithm1 tracks the position
of the current viewfinder frame with respect to the previ-
ously captured images, and a new high-resolution image
is automatically captured when the camera points to an
area that contains enough new scene content. A map
showing the relative positions of the previously captured
images and the current camera pose guides the user in
moving the camera (top left of Figure 7). Once the user has
covered the desired field of view, the images are stitched
into a panorama in-camera, and the result can be viewed
for immediate assessment.

In addition to in-camera stitching, we can use the FCam
API’s ability to individually set the exposure time for each
shot to create a panorama with extended dynamic range, in
the manner of Wilburn et al.21 In this mode, the exposure
time of the captured frames alternates between short and
long, and the amount of overlap between successive frames
is increased, so that each region of the scene is imaged by
at least one short-exposure frame and at least one long-
exposure frame. In the stitching phase, the long and

5.3. HDR viewfinding and capture
HDR photography operates by taking several photographs
and merging them into a single image that better captures
the range of intensities of the scene.19 While modern cam-
eras include a “bracket mode” for taking a set of photos
separated by a preset number of stops, they do not include
a complete “HDR mode” that provides automatic metering,
viewfinding, and compositing of HDR shots. We use the
FCam API to implement such an application on the F2 and
N900 platforms.

HDR metering and viewfinding is done by streaming a
burst of three 640 × 480 shots, whose exposure times are
adjusted based on the scene content, in a manner simi-
lar to Kang et al.10 The HDR metering algorithm sets the
long-exposure frame to capture the shadows, the short
exposure to capture the highlights, and the middle expo-
sure as the midpoint of the two. As the burst is streamed
by the sensor, the three most recently captured images are
merged into an HDR image, globally tone-mapped with a
gamma curve, and displayed in the viewfinder in real time.
This allows the photographer to view the full dynamic range
that will be recorded in the final capture, assisting in com-
posing the photograph.

Once it is composed, a high-quality HDR image is cap-
tured by creating a burst of three full-resolution shots,
with exposure and gain parameters copied from the view-
finder burst. The shots are captured by the sensor, and
the resulting frames are aligned and then merged into a
final image using the Exposure Fusion algorithm.14 Figure
6 shows the captured images and results produced by our
N900 implementation.

5.4. Panorama capture
The field of view of a regular camera can be extended
by capturing several overlapping images of a scene and
stitching them into a single panoramic image. However,
the process of capturing individual images is time-con-
suming and prone to errors, as the photographer needs
to ensure that all areas of the scene are covered. This
is difficult since panoramas are traditionally stitched

time

Figure 5. Foveal imaging records a video stream that alternates between a downsampled view of the whole scene and full-detail insets
of a small region of interest. In this example, the inset is set to scan over the scene, the region of interest moving slightly between each
pair of inset frames.

Figure 6. HDR imaging. The high-speed capture capabilities of
FCam allow capturing a burst of frames for handheld HDR with
minimal scene motion. The final composite produced on-device
is on the right.

98 communications of the acm | november 2012 | vol. 55 | no. 11

research highlights

short exposure panoramas are generated separately, then
combined14 to create an extended dynamic range result.

6. CONCLUSION
We have described the Frankencamera—a camera architec-
ture suitable for experimentation in computational photog-
raphy, and two implementations: our custom-built F2, and a
Nokia N900 running the Frankencamera software stack. Our
architecture includes an API that encapsulates camera state
in the shots and frames that flow through the imaging pipe-
line, rather than in the photographic devices that make up the
camera. By doing so, we unlock the underexploited potential
of commonly available imaging hardware. The applications
we have explored thus far are low-level photographic ones.
With this platform, we now plan to explore applications in
augmented reality, camera user interfaces, and augmenting
photography using online services and photo galleries.

The central goal of this project is to enable research in
computational photography. We are therefore distributing
our platforms to students in computational photography
courses, and are eager to see what will emerge. In the lon-
ger term, our hope is that consumer cameras and devices
will become programmable along the lines of what we
have described, enabling exciting new research and creat-
ing a vibrant community of programmer-photographers.

Acknowledgments
For this work, A. Adams was supported by a Reed-Hodgson
Stanford Graduate Fellowship; E.-V. Talvala was supported
by a Kodak Fellowship. S.H. Park and J. Baek acknowl-
edge support by Nokia. D. Jacobs received support from a
Hewlett Packard Fellowship, and J. Dolson received sup-
port from an NDSEG Graduate Fellowship from the United
States Department of Defense. D. Vaquero was an intern at
Nokia during this work. This work was partially done while
W. Matusik was a Senior Research Scientist and B. Ajdin
was an intern at Adobe Systems, Inc., and we thank David
Salesin and the Advanced Technology Labs for support and
feedback. Finally, M. Levoy acknowledges support from the
National Science Foundation under award 0540872.�

Figure 7. Extended dynamic range panorama capture. A Frankencamera platform allows for experimentation with novel capture interfaces
and camera modes. Here we show a semiautomated panorama capture program, which produces an extended dynamic range panorama.

capture interface individual images extended dynamic range panorama

(2006), 68–75.
	 4.	T he CHDK Project, 2010.
	 5.	D ebevec, P.E., Malik, J. Recovering

high dynamic range radiance maps
from photographs. In (New York, NY,
USA, 1997), ACM Press/
Addison-Wesley Publishing Co, 3
69–378.

	 6.	D urand, F. private communication,
2009.

	 7.	E isemann, E., Durand, F. Flash
photography enhancement
via intrinsic relighting. , 3 (2004),
673–678.

	 8.	H engstler, S., Prashanth, D., Fong,
S., Aghajan, H. Mesheye: a hybrid-
resolution smart camera mote for
applications in distributed intelligent
surveillance. In , 360–369.

	 9.	 Joshi, N., Kang, S.B., Zitnick, C.L.,
Szeliski, R. Image deblurring using
inertial measurement sensors. ,
3 (Aug. 2010).

	10.	K ang, S.B., Uyttendaele, M., Winder,
S., Szeliski, R. High dynamic range
video. In (2003), ACM, New York, NY,
319–325.

	11.	K leihorst, R., Schueler, B., Danilin, A.,
Heijligers, M. Smart camera mote
with high performance vision system.
In ACM SenSys 2006 Workshop on
Distributed Smart Cameras (DSC
2006) (Oct. 2006).

	12.	T he Magic Lantern project, 2010.
	13.	M ann, S., Picard, R.W. On being

‘undigital’ with digital cameras:
extending dynamic range by
combining differently exposed
pictures. In (1995), 442–448.

	14.	M ertens, T., Kautz, J., Reeth, F.V.
Exposure fusion. In (2007).

	15.	 Petschnigg, G., Szeliski, R.,

Agrawala, M., Cohen, M., Hoppe, H.,
Toyama, K. Digital photography
with flash and no-flash image
pairs. In
(2004), ACM, New York, NY,
664–672.

	16.	R ahimi, M., Baer, R., Iroezi, O., Garcia,
J.C., Warrior, J., Estrin, D., Srivastava,
M. Cyclops: in situ image sensing
and interpretation in wireless sensor
networks. In (2005), 192–204.

	17.	R askar, R., Agrawal, A., Tumblin, J.
Coded exposure photography: motion
deblurring using fluttered shutter. In
(2006), ACM, New York, NY, 795–804.

	18.	R askar, R., Tumblin, J. Computational
Photography: Mastering New
Techniques for Lenses, Lighting, and
Sensors, A K Peters, Natick, MA, 2010,
in press.

	19.	R einhard, E., Ward, G., Pattanaik, S.,
Debevec, P. High Dynamic Range
Imaging - Acquisition, Display and
Image-based Lighting, Morgan
Kaufman Publishers, San Francisco,
CA, 2006.

	20.	R owe, A., Goode, A., Goel, D.,
Nourbakhsh, I. CMUcam3: An Open
Programmable Embedded Vision
Sensor. Technical Report RI-
TR-07-13, Carnegie Mellon Robotics
Institute, May 2007.

	21.	 Wilburn, B., Joshi, N., Vaish, V.,
Talvala, E.V., Antunez, E., Barth, A.,
Adams, A., Horowitz, M.,
Levoy, M. High performance imaging
using large camera arrays. In
(2005), ACM, New York, NY,
765–776.

	22.	 Wolf, W., Ozer, B., Lv, T. Smart
cameras as embedded systems.
(2002), 48–53.

Andrew Adams (abadams@csail.mit.edu),
Courier CSAIL. MIT.

David E. Jacobs, Mark Horowitz, Sung
Hee Park, Jongmin Baek, Marc Levoy
({dejacobs, horowitz, shpark7, jbaek,
levoy}@cs.stanford.edu), Stanford
University.

Jennifer Dolson (jen.dolson@gmail.com),
Stanford University.

Marius Tico (mariustico@gmail.com),
Nokia Research Center.

Kari Pulli (karip@nvidia.com), NVIDIA
Research.

Eino-Ville Talvala (etalvala@google.
com), Stanford University (currently at
Google Inc.).

Boris Ajdin, Hendrik P.A. Lensch ({boris.
ajdin, hendrik.lensch}@uni-ulm.de),
Tübingen University.

Daniel Vaquero (daniel.vaquero@gmail.
com), University of California Santa
Barbara.

Natasha Gelfand (ngelfand@gmail.com),
University of Labrador.

Wojciech Matusik (wojciech@csail.mit.
edu), MIT CSAIL.

© 2012 ACM 0001-0782/12/09 $15.00

	 1.	A dams, A., Gelfand, N., and Pulli,
K. Viewfinder alignment. 2 (2008),
597–606.

	 2.	B hat, P., Zitnick, C.L., Snavely, N.,
Agarwala, A., Agrawala, M.,
Cohen, M., Curless, B., Kang, S.B.

Using photographs to enhance videos
of a static scene. In (2007).

	 3.	B ramberger, M., Doblander, A.,
Maier, A., Rinner, B., Schwabach, H.
Distributed embedded smart cameras
for surveillance applications. , 2

References

