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Abstract
Although there has been much interest in computational 
photography within the research and photography com-
munities, progress has been hampered by the lack of a por-
table, programmable camera with sufficient image quality 
and computing power. To address this problem, we have 
designed and implemented an open architecture and appli-
cation programming interface (API) for such cameras: the 
Frankencamera. It consists of a base hardware specification, 
a software stack based on Linux, and an API for C++. Our ar-
chitecture permits control and synchronization of the sen-
sor and image processing pipeline at the microsecond tim-
escale, as well as the ability to incorporate and synchronize 
external hardware like lenses and flashes. This paper speci-
fies our architecture and API, and it describes two reference 
implementations we have built. Using these implementa-
tions, we demonstrate several computational photography 
applications: high dynamic range (HDR) viewfinding and 
capture, automated acquisition of extended dynamic range 
panoramas, foveal imaging, and inertial measurement unit 
(IMU)-based hand shake detection. Our goal is to standardize 
the architecture and distribute Frankencameras to research-
ers and students, as a step toward creating a community of 
photographer-programmers who develop algorithms, appli-
cations, and hardware for computational cameras.

1. INTRODUCTION
Computational photography refers broadly to sensing strat-
egies and algorithmic techniques that enhance or extend 
the capabilities of digital photography. Representative tech-
niques include high dynamic range (HDR) imaging, flash/
no-flash imaging, coded aperture and coded exposure imag-
ing, panoramic stitching, digital photomontage, and light 
field imaging.18

Although interest in computational photography has 
steadily increased among graphics and vision research-
ers, few of these techniques have found their way into 
commercial cameras. One reason is that cameras are 
closed platforms. This makes it hard to incrementally 
deploy these techniques, or for researchers to test them 
in the field. Ensuring that these algorithms work robustly 
is therefore difficult, and so camera manufacturers are 
reluctant to add them to their products. For example, 
although HDR imaging has a long history,5, 13 the literature 
has not addressed the question of automatically deciding 

which exposures to capture, that is, metering for HDR. As 
another example, while many of the drawbacks of flash 
photography can be  ameliorated using flash/no-flash 
imaging,7, 15 these techniques produce visible artifacts in 
many photographic situations.6 Since these features do 
not exist in actual cameras, there is no strong incentive to 
address their artifacts.

Particularly frustrating is that even in platforms like 
smartphones, which encourage app creation and have 
increasingly capable imaging hardware, the programming 
interface to the imaging system is highly simplified, mimick-
ing the physical interface of a point-and-shoot camera. This 
is a logical interface for the manufacturer to include, since 
it is complete for the purposes of basic camera operations 
and stable over many device generations. Unfortunately, it 
means that in these systems it is not possible to create imag-
ing applications that experiment with most areas of compu-
tational photography.

To address this problem, we describe a camera architec-
ture and application programming interface (API) flexible 
enough to implement most of the techniques proposed in 
the computational photography literature. We believe that 
the architecture is precise enough that implementations 
can be built and verified for it, yet high-level enough to allow 
for evolution of the underlying hardware and portability 
across camera platforms. Most importantly, we have found 
it easy to program for.

In the following section, we review previous work in this 
area, which motivates an enumeration of our design goals at 
the beginning of Section 3. We then describe our camera 
architecture in more detail. Our two reference implementa-
tions are shown in Figure 1. The first is the F2, which is com-
posed of off-the-shelf components mounted in a laser-cut 
acrylic case. It is designed for extensibility. Our second plat-
form is a Nokia N900 with a custom software stack. While 
less customizable than the F2, it is smaller, lighter, and 
readily available in large quantities. It demonstrates that 
current smartphones often have hardware components with 
more capabilities than their APIs expose. With these imple-
mentations in mind, we describe how to program for our 
architecture in Section 4. To demonstrate the capabilities 
of the architecture and API, we show several computational 

The original version of this paper was published in ACM 
Trans. Graph. 29, 4 (2010).
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2.2. Smartphones
Smartphones are programmable cell phones that allow 
and even encourage third-party applications. The newest 
smartphones are capable of capturing still photographs 
and videos with quality comparable to point-and-shoot 
cameras. These models contain numerous input and out-
put devices (e.g., touchscreen, audio, buttons, GPS, com-
pass, accelerometers), and are compact and portable. 
While these systems seem like an ideal platform for a 
computational camera, they provide limited interfaces to 
their camera subsystems. Neither Android nor Apple’s iOS 
devices allow application control over absolute exposure 
time, or retrieval of raw sensor data—much less the abil-
ity to stream full-resolution images at the maximum rate 
permitted by the sensor. In fact, they typically provide less 
control of the camera than a DSLR SDK. This lack of control 
makes these devices useful for only a narrow range of com-
putational photography applications. Despite these limita-
tions, the iPhone app store has several hundred third-party 
applications that use the camera. This confirms our belief 
that there is a great interest in extending the capabilities 
of traditional cameras, an interest we hope to support and 
encourage with our architecture.

2.3. Smart cameras
Smart cameras are image sensors combined with local 
processing, storage, or networking, and are generally 
used as embedded computer vision systems.3, 22 These 
cameras provide fairly complete control over the imag-
ing system, with the software stack implementing frame 
capture, low-level image processing, and vision algo-
rithms such as background subtraction, object detection, 
or object recognition. Example research systems are the 
CMUcam,20 Cyclops,16 MeshEye,8 and the Philips wireless 
smart camera motes.11 Commercial systems include the 
National Instruments 17XX, Sony XCI-100, and the Basler 
eXcite series.

The main limitation of these systems is that they are not 
complete cameras. Most are tethered, few support synchro-
nization with other I/O devices, and none contain a view-
finder or a shutter button. Augmenting these devices with 
a separate display complicates the system and introduces 
additional latency.

Our Frankencamera platforms attempt to provide every-
thing needed for a practical computational camera: full 
access to the imaging system like a smart camera, a full user 
interface with viewfinder and I/O interfaces like a smart-
phone, and the ability to be taken outdoors, untethered, like 
a consumer camera.

3. THE FRANKENCAMERA ARCHITECTURE
Informed by our experiences programming for (and teaching 
with) smartphones, point-and-shoots, and DSLRs, we pro-
pose the following set of requirements for a Frankencamera:

1.	 Is handheld, self-powered, and untethered. This lets 
researchers take the camera outdoors and face real-
world photographic problems.

2.	 Has a large viewfinder with a high-quality touch-

photography applications that cannot easily be implemen
ted on current cameras (Section 5).

2. PRIOR WORK
A digital camera is a complex embedded system, spanning 
many fields of research. We limit our review of prior work to 
camera platforms rather than their constituent algorithms, 
to highlight why we believe a new architecture is needed to 
advance the field of computational photography.

2.1. Consumer cameras
Although improvements in the features of digital single-
lens reflex cameras (DSLRs) have been largely incremen-
tal, point-and-shoot camera manufacturers are steadily 
expanding the range of features available on their cameras. 
Unfortunately, the camera software cannot be modified, 
and thus no additional features can be explored by the 
research community. Software development kits (SDKs) by 
manufacturers such as Canon and Nikon require tether-
ing the camera to a computer, and provide no more control 
than the normal user interface.

Though the firmware in these cameras is always propri-
etary, several groups have successfully reverse-engineered 
the firmware for some Canon cameras. In particular, the 
Canon Hack Development Kit4 nondestructively replaces 
the original firmware on a wide range of Canon point-and-
shoot cameras. Photographers can then script the camera, 
adding features such as custom burst modes, motion-
triggered photography, and time-lapse photography. 
Similarly, the Magic Lantern project12 provides enhanced 
firmware for Canon 5D Mark II DSLRs. While these projects 
remove both the need to attach a PC to the camera and the 
problem of latency, they yield roughly the same level of con-
trol as the manufacturer SDKs: the lower levels of the cam-
era are still a black box.

Figure 1. Two implementations of the Frankencamera architecture: 
The custom-built F2 (left)—portable and self-powered, best for 
projects requiring flexible hardware; and the Nokia N900 (right)  
with a modified software stack—a compact commodity platform 
best for rapid development and deployment of applications to  
a large audience.
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screen to enable experimentation with camera user 
interfaces.

3.	 Is easy to program. To that end, it should run a stan-
dard operating system, and be programmable using 
standard languages, libraries, compilers, and debug-
ging tools.

4.	 Has the ability to manipulate sensor, lens, and camera 
settings on a per-frame basis at video rate, so we can 
request bursts of images with unique capture parame-
ters for each image.

5.	 Labels each returned frame with the camera settings 
used for that frame, to allow for proper handling of the 
data produced by requirement 4.

6.	 Allows access to raw pixel values at the maximum 
speed permitted by the sensor interface. This means 
uncompressed, undemosaicked pixels.

7.	 Provides enough processing power in excess of what is 
required for basic camera operation to allow for the 
implementation of nearly any computational photog-
raphy algorithm from the recent literature, and enough 
memory to store the inputs and outputs (often a burst 
of full-resolution images).

8.	 Allows standard camera accessories to be used, such as 
external flash or remote triggers, or more novel devices, 
such as GPS, inertial measurement units (IMUs), or 
experimental hardware. It should make synchronizing 
these devices to image capture straightforward.

Figure 2 illustrates our model of the imaging hardware in 
the Frankencamera architecture. It is general enough to 
cover most platforms so that it provides a stable interface 
to the application designer, yet precise enough to allow for 
the low-level control needed to achieve our requirements. It 
encompasses the image sensor, the fixed-function imaging 

pipeline that deals with the resulting image data, and other 
photographic devices such as the lens and flash.

3.1. The image sensor
One important characteristic of our architecture is that the 
image sensor is treated as stateless. Instead, it is a pipeline 
that transforms requests into frames. The requests specify 
the configuration of the hardware necessary to produce 
the desired frame. This includes sensor configuration like 
exposure and gain, imaging processor configuration like 
output resolution and format, and a list of device actions 
that should be synchronized to exposure, such as if and 
when the flash should fire.

The frames produced by the sensor are queued and 
retrieved asynchronously by the application. Each one 
includes both the actual configuration used in its capture, 
and also the request used to generate it. The two may differ 
when a request could not be achieved by the underlying hard-
ware. Accurate labeling of returned frames (requirement 5) is 
essential for algorithms that use feedback loops like autofo-
cus and metering.

As the manager of the imaging pipeline, a sensor has a 
somewhat privileged role in our architecture compared to 
other devices. Nevertheless, it is straightforward to express 
multiple-sensor systems. Each sensor has its own internal 
pipeline and abstract imaging processor (which may be 
implemented as separate hardware units, or a single time-
shared unit). The pipelines can be synchronized or allowed 
to run independently. Simpler secondary sensors can alter-
natively be encapsulated as devices (described later), with 
their triggering encoded as an action slaved to the expo-
sure of the main sensor.

3.2. The imaging processor
The imaging processor sits between the raw output of the 
sensor and the application processor, and has two roles. 
First, it generates useful statistics from the raw image data, 
including a small number of histograms over programma-
ble regions of the image, and a low-resolution sharpness 
map to assist with autofocus. These statistics are attached to 
the corresponding returned frame.

Second, the imaging processor transforms image data 
into the format requested by the application, by demosaick-
ing, white-balancing, resizing, and gamma correcting as 
needed. As a minimum we only require two formats: the raw 
sensor data (requirement 6) and a demosaicked format of 
the implementation’s choosing. The demosaicked format 
must be suitable for streaming directly to the platform’s dis-
play for use as a viewfinder.

The imaging processor performs both these roles in 
order to relieve the application processor of essential image 
processing tasks, allowing application processor time to 
be spent in the service of more interesting applications 
(requirement 7). Dedicated imaging processors are able to 
perform these roles at a fraction of the compute and energy 
cost of a more general application processor.

Indeed, imaging processors tend to be fixed-functional-
ity for reasons of power efficiency, and so these two statis-
tics and two output formats are the only ones we require in 

Figure 2. The Frankencamera abstract architecture. The architecture 
consists of an application processor, a set of photographic devices 
such as flashes or lenses, and one or more image sensors, each with 
a specialized image processor. A key aspect of this system is that 
image sensors are pipelined. The architecture does not dictate the 
number of stages; here we show a typical system with four frames in 
flight at a time.
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4. PROGRAMMING THE FRANKENCAMERA
Developing for a Frankencamera is similar to developing 
for any Linux device. One writes standard C++ code, com-
piles it with a cross-compiler, and then copies the result-
ing binary to the device. Programs can then be run over 
ssh, or launched directly on the device’s screen. Standard 
debugging tools such as gdb and strace are available. To cre-
ate a user interface, one can use any Linux UI toolkit. We 
typically use Qt and provide code examples written for Qt. 
OpenGL ES 2.0 is available for hardware-accelerated graph-
ics, and regular POSIX calls can be used for networking, file 
I/O, synchronization primitives, and so on. If all this seems 
unsurprising, then that is precisely our aim.

Programmers and photographers interact with our archi-
tecture using the “FCam” API. We now describe the API’s 
basic concepts illustrated by example code.

4.1. Shots
The four basic concepts of the FCam API are shots, sensors, 
frames, and devices. We begin with the shot. A shot is a bun-
dle of parameters that completely describes the capture 
and post-processing of a single output image. A shot speci-
fies sensor parameters such as gain and exposure time (in 
microseconds). It specifies the desired output resolution, 
format (raw or demosaicked), and memory location into 
which to place the image data. It also specifies the configu-
ration of the fixed-function statistics generators by speci-
fying over which regions histograms should be computed 
and at what resolution a sharpness map should be generated. 
A shot also specifies the total time between this frame and 
the next. This must be at least as long as the exposure time 
and is used to specify frame rate independently of exposure 
time. Shots specify the set of actions to be taken by devices 
during their exposure (as a standard STL set). Finally, shots 
have unique ids auto-generated on construction, which assist 
in identifying returned frames.

The example code below configures a shot representing 
a VGA resolution frame, with a 10 ms exposure time, a frame 
time suitable for running at 30 frames per second, and a sin-
gle histogram computed over the entire frame:

Shot shot;
shot.gain = 1.0;
shot.exposure = 10000;
shot.frameTime = 33333;
shot.image = Image (640, 480, UYVY);
shot.histogram.regions = 1;
shot.histogram.region[0] = Rect (0, 0, 640, 480);

4.2. Sensors
After creation, a shot can be passed to a sensor in one of the two 
ways—by capturing it or by streaming it. If a sensor is told to cap-
ture a configured shot (by calling sensor.capture(shot)), 
it pushes that shot into a request queue at the top of the imag-
ing pipeline (Figure 2) and returns immediately.

The sensor manages the entire pipeline in the back-
ground. The shot is issued into the pipeline when it reaches 
the head of the request queue, and the sensor is ready to 

our current architecture. We anticipate that in the longer 
term image processors will become more programmable, 
and we look forward to being able to replace these require-
ments with a programmable set of transformation and 
reduction stages. On such a platform, for example, one 
could write a “camera shader” to automatically extract and 
return feature points and descriptors with each frame to 
use for alignment, or structure-from-motion applications.

3.3. Devices
Cameras are much more than an image sensor. They also 
include a lens, a flash, and other assorted devices. In 
order to facilitate use of novel or experimental hardware, 
the requirements that the architecture places on devices 
are minimal.

Devices are controllable independently of a sensor 
pipeline by whatever means are appropriate to the device. 
However, in many applications the timing of device actions 
must be precisely coordinated with the image sensor to 
create a successful photograph. The timing of a flash firing 
in second-curtain sync mode must be accurate to within a 
millisecond. More demanding computational photogra-
phy applications, such as coded exposure photography,17 
require even tighter timing precision.

To this end, devices may also declare one or more 
actions that they can take synchronized to exposure. 
Programmers can  then schedule these actions to occur at 
a given time within an exposure by attaching the action to 
a frame request. Devices declare the latency of each of their 
actions, and receive a callback at the scheduled time minus 
the latency. In this way, any event with a known latency can 
be accurately scheduled.

Devices may also tag returned frames with meta-
data describing their state during that frame’s exposure 
(requirement 5). Tagging is done after frames leave the 
imaging processor, so this requires devices to keep a log of 
their recent state.

Some devices generate asynchronous events, such as 
when a photographer manually zooms a lens, or presses 
a shutter button. These are time-stamped and placed in 
an event queue, to be retrieved by the application at its 
convenience.

3.4. Discussion
While this pipelined architecture is simple, it expresses the 
key constraints of real camera systems, and it provides fairly 
complete access to the underlying hardware. Current cam-
era APIs model the hardware in a way that mimics the physi-
cal camera interface: the camera is a stateful object, which 
makes blocking capture requests. This view only allows one 
active request at a time and reduces the throughput of a 
camera system to the reciprocal of its latency—a fraction of 
its peak throughput. Streaming modes, such as those used 
for electronic viewfinders, typically use a separate interface, 
and are mutually exclusive with precise frame level control 
of sensor settings, as camera state becomes ill-defined in 
a pipelined system. Using our pipelined model of a cam-
era, we can implement our key architecture goals with a 
straightforward API.
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begin configuring itself for the next frame. If the sensor is 
ready, but the request queue is empty, then a bubble nec-
essarily enters the pipeline. The sensor cannot simply 
pause until a shot is available, because it has several other 
pipeline stages; there may be a frame currently exposing 
and another currently being read out. Bubbles configure 
the sensor to use the minimum frame time and exposure 
time, and the unwanted image data produced by bubbles is 
silently discarded.

Bubbles in the imaging pipeline represent wasted time 
and make it difficult to guarantee a constant frame rate for 
video applications. In these applications, the imaging pipe-
line must be kept full. To prevent this responsibility from 
falling on the API user, the sensor can also be told to stream 
a shot. A shot to be streamed is copied into a holding slot 
alongside the request queue. Then whenever the request 
queue is empty, and the sensor is ready for configuration, 
a copy of the contents of the holding slot enters the pipe-
line instead of a bubble. Streaming a shot is done using 
sensor.stream(shot).

Sensors may also capture or stream vectors of shots, or 
bursts, in the same way that they capture or stream shots. 
Capturing a burst enqueues those shots at the top of the pipe-
line in the order given and is useful, for example, to capture 
a full high-dynamic-range stack in the minimum amount of 
time. As with a shot, streaming a burst causes the sensor to 
make an internal copy of that burst, and atomically enqueue 
all of its constituent shots at the top of the pipeline whenever 
the sensor is about to become idle. Thus, bursts are atomic—
the API will never produce a partial or interrupted burst. The 
following code makes a burst from two copies of our shot, 
doubles the exposure of one of them, and then uses the sen-
sor’s stream method to create frames that alternate exposure 
on a per-frame basis at 30 frames per second. The ability to 
stream shots with varying parameters at video rate is vital for 
many computational photography applications, and hence 
was one of the key requirements of our architecture. It will be 
heavily exploited by our applications in Section 5.

std : : vector<Shot> burst(2);
burst[0] = shot;
burst[1] = shot;
burst[1].exposure = burst[0].exposure*2;
sensor.stream(burst);

To update the parameters of a shot or burst that is currently 
streaming (e.g., to modify the exposure as the result of a meter-
ing algorithm), one merely modifies the shot or burst and calls 
stream again. Since the shot or burst in the internal holding 
slot is atomically replaced by the new call to stream, no partially 
updated burst or shot is ever issued into the imaging pipeline.

4.3. Frames
On the output side, the sensor produces frames, retrieved 
from a queue of pending frames via the getFrame 
method. This method is the only blocking call in the core 
API. A frame contains image data, the output of the sta-
tistics generators, the precise time at which the exposure 

began and ended, the actual parameters used in its cap-
ture, and the requested parameters in the form of a copy 
of the shot used to generate it. If the sensor was unable 
to achieve the requested parameters (e.g., if the requested 
frame time was shorter than the requested exposure time), 
then the actual parameters will reflect the modification 
made by the system.

Frames can be identified by the id field of their shot. 
Being able to reliably identify frames is another of the key 
requirements for our architecture. The following code 
displays the longer exposure of the two frames speci-
fied in the burst above, but uses the shorter of the two 
to perform metering. The functions displayImage and 
metering are hypothetical functions that are not part of 
the API.

while (1) {
    Frame frame = sensor.getFrame();
   if (frame.shot().id == burst[1].id) {
     displayImage(frame.image);
   }   else if (frame.shot().id == burst[0].id) {
     unsigned newExposure = metering(frame);
     burst[0].exposure = newExposure;
     burst[1].exposure = newExposure*2;
     sensor.stream(burst);
   }
}

In simple programs, it is typically not necessary to check 
the ids of returned frames, because our API guarantees that 
exactly one frame comes out per shot requested, in the same 
order. Frames are never duplicated or dropped entirely. 
If image data is lost or corrupted due to hardware error, 
a frame is still returned (possibly with statistics intact), with 
its image data marked as invalid.

4.4. Devices
In our API, each device is represented by an object with 
methods for performing its various functions. Each device 
may additionally define a set of actions, which are used to 
synchronize these functions to exposure, and a set of tags 
representing the metadata attached to returned frames. 
While the exact list of devices is platform-specific, the API 
includes abstract base classes that specify the interfaces to 
the lens and the flash.

The lens can be directly asked to initiate a change to 
any of its three parameters: focus (measured in diopters), 
focal length, and aperture, with the methods setFocus, 
setZoom, and setAperture. These calls return immedi-
ately, and the lens starts moving in the background. For cases 
in which lens movement should be synchronized to expo-
sure, the lens defines three actions to do the same. Each call 
has an optional second argument that specifies the speed 
with which the change should occur. Additionally, each 
parameter can be queried to see if it is currently changing, 
what its bounds are, and its current value. The following code 
moves the lens from its current position to infinity focus over 
the course of 2s.

research highlights 
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Lens lens;
float speed = (lens.getFocus()-lens.
farFocus() )/2;
lens.setFocus(lens.farFocus(), speed);

A lens tags each returned frame with the state of each of its 
three parameters during that frame. Tags can be retrieved 
from a frame like so:

Frame frame = sensor.getFrame();
Lens :: Tags *tags = frame->tags(&lens);
cout << “The lens was at: ” << tags->focus;

The flash has a single method that tells it to fire with a speci-
fied brightness and duration, and a single action that does 
the same. It also has methods to query bounds on brightness 
and duration. Flashes with more capabilities (such as the 
strobing flash in Figure 3) can be implemented as sub-
classes of the base flash class. The flash tags each returned 
frame with its state, indicating whether it fired during that 
frame, and if so with what parameters.

The following code example adds an action to our shot 
to fire the flash briefly at the end of the exposure (second-
curtain sync). The results of a similar code snippet run on 
the F2 can be seen in Figure 3.

Flash flash;
Flash :: FireAction fire(&flash);
fire.brightness = flash.maxBrightness();
fire.duration = 5000;
fire.time = shot.exposure - fire.duration;
shot.actions.insert(&fire);

Other devices can be straightforwardly incorporated into 
the API, allowing easy management of the timing of their 

actions. One merely needs to inherit from the Device base 
class, add methods to control the device in question, and 
then define any appropriate actions, tags, and events. This 
flexibility is critical for computational photography, in 
which it is common to experiment with novel hardware that 
affects image capture.

4.5. Implementation
In our current API implementations, apart from fixed-
function image processing, FCam runs entirely on the ARM 
CPU in the OMAP3430, using a small collection of user-space 
threads and modified Linux kernel modules. Our system is 
built on top of Video for Linux 2 (V4L2)—the standard Linux 
kernel video API. V4L2 treats the sensor as stateful with no 
guarantees about timing of parameter changes. To provide 
the illusion of a stateless sensor processing stateful shots, we 
use several real-time-priority threads to manage updates to 
image sensor parameters, readback of image data and meta-
data, and device actions synchronized to exposure.

Our image sensor drivers are standard V4L2 sensor driv-
ers with one important addition. We add controls to specify 
the time taken by each individual frame, which are imple-
mented by adjusting the amount of extra vertical blanking 
in sensor readout.

4.6. Discussion
Our goals for the API were to provide intuitive mechanisms 
to precisely manipulate camera hardware state over time, 
including control of the sensor, fixed-function processing, 
lens, flash, and any associated devices. We have accom-
plished this in a minimally surprising manner, which should 
be a key design goal of any API. The API is limited in scope 
to what it does well, so that programmers can continue to 
use their favorite image processing library, UI toolkit, file 
I/O, and so on. Nonetheless, we have taken a “batteries 
included” approach, and made available control algorithms 
for metering and focus, image processing functions to cre-
ate raw and JPEG files, and example applications that dem-
onstrate using our API with the Qt UI toolkit and OpenGL ES.

Implementing the API on our two platforms required 
a  shadow pipeline of in-flight shots, managed by a collec-
tion of threads, to fulfill our architecture specification. This 
makes our implementation brittle in two respects. First, an 
accurate timing model of image sensor and imaging pro-
cessor operation is required to correctly associate output 
frames with the shot that generated them. Second, determin-
istic guarantees from the image sensor about the latency of 
parameter changes are required, so that we can configure the 
sensor correctly. In practice, there is a narrow time window 
in each frame during which sensor settings may be adjusted 
safely. To allow us to implement our API more robustly, 
future image sensors should provide a means to identify 
every frame they produce on both the input and output 
sides. Setting changes could then be requested to take effect 
for a named future frame. This would substantially reduce 
the timing requirements on sensor configuration. Image 
sensors could then return images tagged with their frame 
id (or even the entire sensor state), to make association of 
image data with sensor state trivial.

Figure 3. The Frankencamera API provides precise timing control  
of secondary devices like the flash. Here, two Canon flash units  
were mounted on an F2, one set to strobe and one to fire once  
at end of the exposure.
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unlikely. Indeed, Joshi et al.9 show how to deblur the cap-
tured images using the motion path (as recorded by the IMU) 
as a prior.

5.2. Foveal imaging
CMOS image sensors are typically bandwidth-limited 
devices that can expose pixels faster than they can be read 
out into memory. Full-sensor-resolution images can only be 
read out at a limited frame rate: roughly 12 fps on our plat-
forms. Low-resolution images, produced by downsampling 
or cropping on the sensor, can be read at a higher-rate: up to 
90 fps on the F2. Given that we have a limited pixel budget, it 
makes sense to only capture those pixels that are useful mea-
surements of the scene. In particular, image regions that are 
out-of-focus or oversaturated can safely be recorded at low 
spatial resolution, and image regions that do not change 
over time can safely be recorded at low temporal resolution.

Foveal imaging uses a streaming burst, containing shots 
that alternate between downsampling and cropping on the 
sensor. The downsampled view provides a 640 × 480 view of 
the entire scene, and the cropped view provides a 640 × 480 
inset of one portion of the scene, analogously to the human 
fovea (Figure 5). The fovea can be placed on the center of 
the scene, moved around at random in order to capture 
texture samples, or programmed to preferentially sample 
sharp, moving, or well-exposed regions. For now, we have 
focused on acquiring the data, and present results pro-
duced by moving the fovea along a prescribed path. In the 
future, we intend to use this data to synthesize full-resolu-
tion high-framerate video, similar to the work of Bhat et al.2

Downsampling and cropping on the sensor is a capabil-
ity of the Aptina sensor in the F2 not exposed by the base 
API. To access this, we use derived versions of the Sensor, 
Shot, and Frame classes specific to the F2 API implemen-
tation. These extensions live in a sub-namespace of the 
FCam API. In general, this is how FCam handles platform-
specific extensions.

5. APPLICATIONS
We now describe a number of applications of the Franken-
camera architecture and API to concrete problems in pho-
tography. Most run on either the N900 or the F2, though 
some require hardware specific to one platform or the 
other. These applications are representative of the types 
of in-camera computational photography our architecture 
enables, and several are also novel applications in their own 
right. They are all either difficult or impossible to implement 
on existing platforms, yet simple to implement under the 
Frankencamera architecture.

5.1. IMU-based lucky imaging
Long-exposure photos taken without use of a tripod are usu-
ally blurry, due to natural hand shake. However, hand shake 
varies over time, and a photographer can get “lucky” and 
record a sharp photo if the exposure occurs during a period 
of stillness (Figure 4). Our “Lucky Imaging” application uses 
an experimental Nokia three-axis gyroscope affixed to the 
front of the N900 to detect hand shake. Utilizing a gyroscope 
to determine hand shake is computationally cheaper than 
analyzing full resolution image data, and will not confuse 
blur caused by object motion in the scene with blur caused 
by hand shake. We use an external gyroscope because the 
internal accelerometer in the N900 is not sufficiently accu-
rate for this task.

To use the gyroscope with the FCam API, we created a 
device subclass representing a three-axis gyroscope. The 
gyroscope object then tags frames with the IMU measure-
ments recorded during the image exposure. The application 
streams full-resolution raw frames, saving them to storage 
only when their gyroscope tags indicate low motion during 
the frame in question. The ease with which this external 
device could be incorporated is one of the key strengths of 
our architecture.

This technique can be extended to longer exposure times 
where capturing a “lucky image” on its own becomes very 

Figure 4. Lucky Imaging. An image stream and three-axis gyroscope data for a burst of three images with 0.5s exposure times. The FCam API 
synchronizes the image and motion data, and only the frames determined to have low motion are saved to storage.
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off-camera, so that no on-line preview of this capture pro-
cess is available.

In order to address these issues, we implemented an 
application for capturing and generating panoramas 
using the FCam API on the N900. In the capture interface, 
the viewfinder alignment algorithm1 tracks the position 
of the current viewfinder frame with respect to the previ-
ously captured images, and a new high-resolution image 
is automatically captured when the camera points to an 
area that contains enough new scene content. A map 
showing the relative positions of the previously captured 
images and the current camera pose guides the user in 
moving the camera (top left of Figure 7). Once the user has 
covered the desired field of view, the images are stitched 
into a panorama in-camera, and the result can be viewed 
for immediate assessment.

In addition to in-camera stitching, we can use the FCam 
API’s ability to individually set the exposure time for each 
shot to create a panorama with extended dynamic range, in 
the manner of Wilburn et al.21 In this mode, the exposure 
time of the captured frames alternates between short and 
long, and the amount of overlap between successive frames 
is increased, so that each region of the scene is imaged by 
at least one short-exposure frame and at least one long-
exposure frame. In the stitching phase, the long and 

5.3. HDR viewfinding and capture
HDR photography operates by taking several photographs 
and merging them into a single image that better captures 
the range of intensities of the scene.19 While modern cam-
eras include a “bracket mode” for taking a set of photos 
separated by a preset number of stops, they do not include 
a complete “HDR mode” that provides automatic metering, 
viewfinding, and compositing of HDR shots. We use the 
FCam API to implement such an application on the F2 and 
N900 platforms.

HDR metering and viewfinding is done by streaming a 
burst of three 640 × 480 shots, whose exposure times are 
adjusted based on the scene content, in a manner simi-
lar to Kang et al.10 The HDR metering algorithm sets the 
long-exposure frame to capture the shadows, the short 
exposure to capture the highlights, and the middle expo-
sure as the midpoint of the two. As the burst is streamed 
by the sensor, the three most recently captured images are 
merged into an HDR image, globally tone-mapped with a 
gamma curve, and displayed in the viewfinder in real time. 
This allows the photographer to view the full dynamic range 
that will be recorded in the final capture, assisting in com-
posing the photograph.

Once it is composed, a high-quality HDR image is cap-
tured by creating a burst of three full-resolution shots, 
with exposure and gain parameters copied from the view-
finder burst. The shots are captured by the sensor, and 
the resulting frames are aligned and then merged into a 
final image using the Exposure Fusion algorithm.14 Figure 
6 shows the captured images and results produced by our 
N900 implementation.

5.4. Panorama capture
The field of view of a regular camera can be extended 
by capturing several overlapping images of a scene and 
stitching them into a single panoramic image. However, 
the process of capturing individual images is time-con-
suming and prone to errors, as the photographer needs 
to ensure that all areas of the scene are covered. This 
is difficult since panoramas are traditionally stitched 

time

Figure 5. Foveal imaging records a video stream that alternates between a downsampled view of the whole scene and full-detail insets 
of a small region of interest. In this example, the inset is set to scan over the scene, the region of interest moving slightly between each 
pair of inset frames.

Figure 6. HDR imaging. The high-speed capture capabilities of  
FCam allow capturing a burst of frames for handheld HDR with 
minimal scene motion. The final composite produced on-device  
is on the right.
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short exposure panoramas are generated separately, then 
combined14 to create an extended dynamic range result.

6. CONCLUSION
We have described the Frankencamera—a camera architec-
ture suitable for experimentation in computational photog-
raphy, and two implementations: our custom-built F2, and a 
Nokia N900 running the Frankencamera software stack. Our 
architecture includes an API that encapsulates camera state 
in the shots and frames that flow through the imaging pipe-
line, rather than in the photographic devices that make up the 
camera. By doing so, we unlock the underexploited potential 
of commonly available imaging hardware. The applications 
we have explored thus far are low-level photographic ones. 
With this platform, we now plan to explore applications in 
augmented reality, camera user interfaces, and augmenting 
photography using online services and photo galleries.

The central goal of this project is to enable research in 
computational photography. We are therefore distributing 
our platforms to students in computational photography 
courses, and are eager to see what will emerge. In the lon-
ger term, our hope is that consumer cameras and devices 
will become programmable along the lines of what we 
have described, enabling exciting new research and creat-
ing a vibrant community of programmer-photographers.
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Figure 7. Extended dynamic range panorama capture. A Frankencamera platform allows for experimentation with novel capture interfaces 
and camera modes. Here we show a semiautomated panorama capture program, which produces an extended dynamic range panorama.
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