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Figure 1. Left: A low-cost, high-density, large-scale intelligent carpet system to capture the real-time human-floor tactile interactions.

Right: The inferred 3D human pose from the captured tactile interactions of a person standing up from a sitting position.

Abstract

Daily human activities, e.g., locomotion, exercises, and

resting, are heavily guided by the tactile interactions be-

tween the human and the ground. In this work, leveraging

such tactile interactions, we propose a 3D human pose es-

timation approach using the pressure maps recorded by a

tactile carpet as input. We build a low-cost, high-density,

large-scale intelligent carpet, which enables the real-time

recordings of human-floor tactile interactions in a seam-

less manner. We collect a synchronized tactile and visual

dataset on various human activities. Employing a state-of-

the-art camera-based pose estimation model as supervision,

we design and implement a deep neural network model to

infer 3D human poses using only the tactile information.

Our pipeline can be further scaled up to multi-person pose

estimation. We evaluate our system and demonstrate its po-

tential applications in diverse fields.

1. Introduction

Human pose estimation is critical in action recognition

[30, 52], gaming [26], healthcare [64, 36, 22], and robotics

[34]. Significant advances have been made to estimate hu-

man pose by extracting skeletal kinematics from images

and videos. However, camera-based pose estimation re-

mains challenging when occlusion happens, which is in-

evitable during daily activities. Further, the rising demand

for privacy also promotes development in non-vision-based

human pose estimation systems [63, 62]. Since most hu-

man activities are dependent on the contact between the

human and the environment, we present a pose estima-

tion approach using tactile interactions between humans

and the ground. Recently, various smart floor or carpet

systems have been proposed for human movement detec-

tion [11, 2, 48, 7, 3, 60, 40, 16, 1], and posture recognition

[25, 50]. Previous work has also demonstrated the feasibil-

ity of using pressure images for pose estimation [6, 9, 8].

However, these studies mainly focus on the estimation of

poses where a large portion of the body is in direct con-

tact with the sensing surface, e.g., resting postures. A more

challenging task is to infer 3D human pose from the limited

pressure imprints involved in complicated daily activities,

e.g., using feet pressure distribution to reconstruct the pose

of the head and limbs. So far, complex 3D human pose esti-

mation and modeling using tactile information, spanning a

diverse set of human activities including locomotion, rest-

ing, and daily exercises, have not been available.

In this study, we first develop an intelligent carpet –

a large integrated tactile sensing array consisting of over

9,000 pressure sensors, covering over 36 square feet, which

can be seamlessly embedded on the floor. Coupled with

readout circuits, our system enables real-time recordings
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of high-resolution human-ground tactile interactions. With

this hardware, we collect over 1,800,000 synchronized tac-

tile and visual frames for 10 different individuals perform-

ing a diverse set of daily activities, e.g., lying, walking, and

exercising. Employing the visual information as supervi-

sion, we design and implement a deep neural network to in-

fer the corresponding 3D human pose using only the tactile

information. Our network predicts the 3D human pose with

the average localization error of less than 10 cm compared

with the ground truth pose obtained from the visual infor-

mation. The learned representations from the pose estima-

tion model, when combined with a simple linear classifier,

allow us to perform action classification with an accuracy

of 98.7%. We also include ablation studies and evaluate

how well our model generalizes to unseen individuals and

unseen actions. Moreover, our approach can be scaled up

for multi-person 3D pose estimation. Leveraging the tactile

sensing modality, we believe our work opens up opportuni-

ties for human pose estimation that is unaffected by visual

obstructions in a seamless and confidential manner.

2. Related Work

2.1. Human Pose Estimation

Thanks to the availability of large-scale datasets of an-

notated 2D human poses and the introduction of deep neu-

ral network models, human pose estimation from 2D im-

ages or videos has witnessed major advances in recent

years [57, 56, 45, 38, 39, 59, 46, 5, 17, 12, 20, 54]. Re-

covering 3D information from 2D inputs is intrinsically

ambiguous. Some recent attempts to recover 3D human

pose from 2D images either require explicit 3D supervi-

sion [33] or rely on a discriminator and adversarial train-

ing to learn a valid pose distribution [23, 24] or perform-

ing semi-supervised learning by leveraging the temporal in-

formation [44]. Still, 3D pose estimation remains a chal-

lenging problem due to the underlying ambiguity. Many

methods do not perform well in the presence of a severe

occlusion. Another alternative is to use multi-camera mo-

tion capture systems (e.g., VICON) or multiple cameras to

obtain a more reliable pose estimation [51, 63, 21].

Our work builds upon the past advances in computer

vision by using OpenPose [4] to extract the 2D keypoints

from multiple cameras and triangulate them to generate the

ground truth 3D pose. Our system predicts 3D pose from

only the tactile signals, which does not require any visual

data and is fundamentally different from all past work in

computer vision. The introduced tactile carpet has a lower

spatial resolution than typical cameras. However, it func-

tions as a camera viewing humans from the bottom up. This

type of data stream does not suffer from occlusion problems

that are typical for camera systems. Furthermore, it pro-

vides additional information, such as whether humans are
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Figure 2. Tactile data acquisition hardware. Top: Our recording

set-up includes a tactile sensing carpet spanning 36 ft2 with 9,216

sensors (upper right), the corresponding readout circuits, and 2

cameras. Bottom: Typical pressure maps captured by the carpet

from diverse human poses and activities.

in contact with the ground and the pressure they exert.

2.2. Tactile Sensing

Recent advances in tactile sensing have benefited

the recording, monitoring, and modeling of human-

environment interactions in a variety of contexts. Sun-

daram et al. [55] have investigated the signatures of hu-

man grasp through the tactile interaction between human

hands and different objects, while other researchers have

proposed to connect vision and touch using cross-domain

modeling [31, 61, 28]. Davoodnia et al. [10] transform an-

notated in-bed human pressure map [41, 15] to images con-

taining shapes and structures of body parts for in-bed pose

estimation. Furthermore, extensive works on biomechanics,

human kinematics, and dynamic motions [13, 29, 35, 32]

have explored the use of the foot pressure maps induced

by daily human movement.Previous studies have demon-

strated human localization and tracking by embedding in-

dividual pressure sensing units in the smart floor systems

[53, 50]. Furthermore, using large-scale pressure sensing

matrices, researchers have been able to capture foot pres-

sure patterns when humans are standing and walking and

develop models that provide gait analysis and human identi-

fication [43, 58, 37]. Based on the fact that human maintains

balance through redirecting the center of mass by exerting

force on the floor [19], Scott et al. [49] have predicted foot

pressure heatmap from 2D human kinematics.

Different from previous works, which include only lim-

ited actions due to the limited size and resolution of the

tactile sensing platform, we record and leverage high-

resolution tactile data from diverse human daily activities,

e.g., exercises, to estimate 3D human skeleton.

3. Dataset

In this section, we describe details of our hardware setup

for tactile data acquisition, pipeline for ground truth 3D

keypoint confidence map generation, as well as data aug-

mentation and synthesis for multi-person pose estimation.
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RGB Images 2D Skeleton 3D Skeleton 3D Confidence Map Label
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Figure 3. 3D keypoint confidence map generation. The ground

truth voxelized 3D keypoint confidence maps are annotated by first

extracting 2D skeleton keypoints from RGB images using Open-

Pose [4], then generating 3D keypoints through triangulation and

optimization, and finally applying a 3D Gaussian filter.

3.1. Tactile Data Acquisition

Our tactile data acquisition is based on a custom, high-

density, large-scale piezoresistive pressure sensing carpet,

which spans over 36 ft2 and contains 9,216 sensors with

a spacing of 0.375 inches. The carpet is composed of a

piezoresistive pressure sensing matrix fabricated by align-

ing a network of orthogonal conductive threads as elec-

trodes on each side of the commercial piezoresistive films.

Each sensor locates at the overlap of orthogonal electrodes

and is able to measure pressure up to 14 kPa with the highest

sensitivity of 0.3 kPa. Our tactile sensing carpet is low-cost

(∼$100), easy to fabricate, and robust for large-scale data

collection. Using the coupled readout circuit, we collect the

tactile frames with 9,216 individual sensing readouts at a

rate of 14 Hz.

With such a large-scale high-resolution tactile sensing

platform, we can not only capture people’s foot pressure

maps, which most of the previous work focused on, but also

capture the full tactile interactions between the human and

the floor when people are performing complex activities.

As shown in Figure 2, our carpet captures the feet pressure

maps when people perform activities in upright positions, as

well as the physical contacts between the human body (e.g.,

hands, limbs) and the floor when people perform exercises

and complex actions (e.g., push-ups, sit-ups, and rolling).

We have collected over 1,800,000 synchronized tactile

and visual frames for 10 volunteers performing 15 actions.

More details are included in supplementary materials. Our

tactile acquisition set-up and the captured dataset are open-

sourced to facilitate future research in the field.

3.2. 3D Pose Label Generation

We design and implement a pipeline to capture and gen-

erate the training pairs, i.e., synchronized tactile frames and

3D keypoint confidence maps. We capture visual data with

2 cameras that are synchronized and calibrated with respect

to the global coordinate of the tactile sensing carpet using

standard stereo camera calibration techniques. In order to

annotate the ground truth human pose in a scalable manner,

we leverage a state-of-the-art vision-based system, Open-

Pose [5], to generate 2D skeletons from the images captured

by the cameras.

Once we have obtained the 2D skeletons generated from

the calibrated camera system, we triangulate the keypoints

to generate the corresponding 3D skeletons. The triangu-

lation results may not be perfect in some frames due to

perception noise or misdetection. To resolve this issue,

we add a post-optimization stage to constrain the length of

each link. More specifically, we first calculate the length

of the links in the skeleton using the median value across

the naively triangulated result for each person. For this spe-

cific person, we denote the length of the ith link as Ki. We

then use q
A and q

B to represent the detected N keypoints

at a specific time step from the two cameras, which lie in a

2D space, where q
A = {qA

1
, . . . , qA

N
} and q

A
k
= (uA

k
, vA

k
).

We then calculate the length of each link K̂i from the naive

triangulation result and optimize the 3D location of the key-

points p = {p1, . . . ,pN} by minimizing the following loss

function using stochastic gradient descent:

Lskeleton =
N
∑

k=1

‖PA
pk − q

A
k
‖+

N
∑

k=1

‖PB
pk − q

B
k
‖

+
N−1
∑

i=1

‖K̂i −Ki‖

(1)

where there are N keypoints and N − 1 links, p =
{p1, . . . ,pN} lie in 3D space spanned by the world coordi-

nate, pk = (xk, yk, zk). P
A and PB are the camera matrices

that project the 3D keypoints onto the 2D image frame. In

our experiments, we use N = 21. The accuracy of the 3D

pose label and the effectiveness of our optimization pipeline

are further analyzed in supplementary materials.

Given the optimized 3D positions of the 21 keypoints on

the human skeleton, we further generate the 3D keypoint

confidence maps by applying a 3D Gaussian filter over the

keypoint locations on a voxelized 3D space (Figure 3).

3.3. Data Augmentation and Multi­person Dataset
Synthesis

When projecting the human skeletons to the x-y plane

(Figure 1), we find a spatial correspondence between the

projection and the tactile signals, which allows us to aug-

ment our dataset by rotating and shifting the tactile frames

and the corresponding human skeletons.

Due to the restriction of social distancing and the size of

the sensing carpet, we conduct the data collection with only

one person at a time. The multi-person dataset, however, is

synthesized by combining multiple single-person clips. In

other words, we add up the synchronized tactile frames and

the generated 3D keypoint confidence maps from different
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Figure 4. Overview of the model for 3D human pose estimation. Our model consists of an encoder and a decoder. The encoder maps

the input tactile sequence into a 10×10 feature through 7 blocks of Conv2D-LeakyReLU-BatchNorm. We then expand the feature and

repeat along the last dimension to transform the 2D feature map into a 3D feature volume. After appending an indexing volume indicating

the height of each voxel, the feature goes through a set of decoding layers to generate the predicted confidence map for each keypoint.

recording clips. More specifically, since people rarely per-

form actions with one on top of the other, we assume that

the pressure maps induced by the actions of different people

will not overlap at the given time. We specify the location of

each person by creating anchor boxes of the human skele-

ton projected onto the floor plane. We remove frames with

the Intersection over Union (IoU) larger than 0.1 to ensure

that the skeletons and tactile signals from different people

do not overlap with each other. Note that the training of our

models in the experiments is entirely based on the single-

person dataset and the synthetic multi-person variants. We

also record synchronized visual and tactile data for multiple

people but only for evaluation purposes.

4. Method

In this section, we present the details of our pose estima-

tion model. We first discuss how we transform the tactile

frames into 3D volumes indicating the confidence map of

the keypoints. We then describe how we extend it to multi-

person scenarios and present the implementation details.

4.1. Keypoint Detection using Tactile Signals

The goal of our model is to take the tactile frames as

input and predict the corresponding 3D human pose. We

take the ground truth human pose estimated from our multi-

camera setup as the supervision and train our model to pre-

dict the 3D confidence map of each of the 21 keypoints, in-

cluding head, neck, shoulders, elbows, waists, hips, knees,

ankles, heels, small and big toes.

To include more contextual information and reduce the

effects caused by the sensing noise, instead of taking a sin-

gle tactile frame as input, our model takes a sequence of

tactile frames spanning a temporary window of length M

as input (Figure 4). For each input segment, the model pro-

cesses the spatio-temporal tactile information and outputs

the keypoint confidence maps in 3D that correspond to the

middle frame.

As shown in Figure 1, the input tactile frames lie in 2D

space, which has a nice spatial correspondence with the

human skeleton over the x-y plane (the floor plane). Our

model builds on top of a fully convolutional neural network

to exploit such spatial equivariance. The encoder of our

model uses 2D convolution to process the tactile frames.

Then, to regress the keypoints in 3D, we expand the feature

map by repeating it along a new dimension in the middle

of our network (Figure 4), which essentially transforms the

2D feature map into a 3D feature volume. However, naive

2D to 3D expanding via repetition will introduce ambigu-

ities as subsequent convolutional layers use shared kernels

to process the feature - it is impossible to tell the height of

a specific voxel, making it hard to regress the keypoint lo-

cation along the z-axis. To resolve this issue, we add a new

channel to the 3D feature map with a 3-dimensional index-

ing volume, indicating the height of each voxel. We then

use 3D convolution to process the feature and predict the

3D keypoint confidence map for each of the 21 keypoints.

The detailed architecture and the size of the feature maps

along the forwarding pass are shown in Figure 4.

We optimize the model by minimizing the Mean Squared

Error (MSE) between the predicted keypoint heatmap and

the ground truth using Adam optimizer [27]. We also use

spatial softmax to transform the heatmap into the keypoint

location and include an additional loss term Llink to con-

strain the length of each link in the skeleton to lie in the

range of normal human limb length. For each data point,

the loss function is defined as:

L =
1

N

N
∑

i=1

‖Hi − Ĥi‖+
1

N − 1

N−1
∑

i=1

Llink
i

, (2)

where N denotes the number of keypoints, N − 1 is the

number of links in the skeleton, Hi and Ĥi represent the

ground truth and the predicted 3D keypoint confidence
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maps. The link loss is defined as the following:

Llink
i

=











Kmin
i

− K̂i, if K̂i < Kmin
i

.

K̂i −Kmax
i

, if K̂i > Kmax
i

.

0, otherwise,

(3)

where K̂i is the link length calculated from our prediction,

Kmin
i

and Kmax
i

represent the 3th and 97th percentile of each

of the body limb length in the training dataset.

4.2. Keypoint Detection for Multiple People

When moving into multi-person scenarios, each key-

point confidence map can contain multiple regions with

high confidence that belong to different people. Therefore,

we threshold the keypoint confidence map to segment out

each of these high confidence regions, and then calculate

the centroid of each region to transform it into the 3D key-

point location. To associate the keypoints that belong to the

same person, we start from the keypoint of the head and tra-

verse through the person’s skeleton (represented as a tree)

to include the remaining keypoints. Every time we want to

add a new keypoint to the person, e.g., the neck, we select

the one among multiple extracted keypoint candidates with

the closest L2 distance to its parent, e.g., head, which has

already been added to the person on the skeleton tree. This

method is simple but works well when people are kept at

a certain distance from each other. More complicated and

effective techniques could be used to handle cases where

people are very close to each other [5]. Since it is not the

main focus of this paper, we plan to explore this direction

in the future.

4.3. Implementation Details

Our network is implemented using PyTorch [42]. We

train the model by minimizing Eq. 2 using a learning rate

of 1e−4 and a batch size of 32. As shown in Figure 4, the

encoding part of our network consists of 7 groups of layers.

The Conv2D in the first 5 and the 7th layers use 3×3 ker-

nels and 1×1 padding. The 6th uses 5×5 kernels and zero

padding. A 2×2 MaxPool2D is also applied in the 2nd, 4th,

and 7th layers to reduce the resolution of the feature maps.

We expand the tactile feature maps to 3D by repeating

the tensor 9 times along the last dimension, and then ap-

pend the channel with a 3D indexing volume indicating the

height of each voxel. The decoding network takes in the

resulting tensor and predicts the 3D confidence maps of the

keypoints.

The decoder is composed of 5 layers of 3×3 ×3 3D con-

volution with a padding of 1×1 ×1. The 11th layer uses

a kernel size of 2×2×2 with a stride of 2 to increase the

resolution. We also apply batch normalization and Leaky

ReLU after each layer except the last one, where we use the

Sigmoid activation function to regress the confidence value.

Axis

X 6.8 6.4 6.3 8.9 10.9 4.6 5.8 5.6 6.4

Y 7.2 8.0 6.5 8.8 10.9 5.2 5.8 5.7 6.7

Z 6.8 9.6 7.0 8.9 14.4 4.0 4.0 3.1 3.5

Ave.  Head  Shoulder  Elbow  Wrist   Hip  Knee  Ankle  Feet

Figure 5. Results on single person pose estimation (unit: cm).

Top: The Euclidean distance between the predicted single-person

3D skeleton (21 keypoints) and the ground truth label. Bottom:

Average keypoint localization error of body parts along the X, Y,

and Z axis in the real-world coordinate. Since the changes in pres-

sure maps are dominated by the movements of the lower body and

the torso, their predictions are more accurate.

5. Experiments

5.1. Single Person Pose Estimation

Single-person pose estimation is trained with 135,000

pairs of tactile and visual frames and validated on 30,000

pairs of frames. The performance is tested on a held-out test

set with 30,000 tactile frames. We use Euclidean distance

(L2) as the evaluation metric to compare the predicted 3d

human pose to the corresponding ground truth human pose

retrieved from the visual data. The L2 distance of each key-

point and the localization error of each body part are listed

in Figure 5. Generally, keypoints on the lower body (e.g.,

knee and ankle) and the torso (e.g., shoulder and hip) hold

higher accuracy compared with the keypoints on the upper

body (e.g., waist and head). The observation agrees with

our intuition that changes in pressure maps are primarily de-

termined by the positions of the lower body and the torso.

We also note that the model obtains better predictions if the

keypoints are closer to the torso on the skeleton tree - the

prediction error increases as we move further away from the

torso, e.g., shoulders to elbows, and then to the waist. Fig-

ure 6 shows some qualitative results on the 3D human pose

predictions, along with the input tactile frames, ground truth

pose extracted from the RGB image, over a continuous time

sequence.

We perform ablation studies on the sensing resolution

of the intelligent carpet. To ablate the tactile sensing res-

olution, we reassign the value in each 2 × 2 grid with the

average of the four values, which reduces the effective reso-

lution from 96 × 96 to 48 × 48. We then use the same train-
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Figure 6. The qualitative results of single-person 3D pose estimation across time steps. For each sequence, from top to bottom, we

show the RGB image as ground truth annotation (only used here for visualization purpose), the captured tactile frame, ground truth 3D

skeleton, and predicted 3D skeleton from our model using only the tactile frames (unit: cm). The predicted poses are consistent over time

with a smooth transition along the corresponding trajectories.

Figure 7. Ablation studies. Model performance with different

sensing resolution (left) and the number of input frames (right).

ing pipeline to derive the predictions. A similar procedure

is employed for evaluating the model performance with the

effective sensing resolution of 24 × 24 and 12 × 12. As

Figure 7 illustrates, the prediction accuracy decreases with

the decrease of sensing resolution, which reiterates the im-

portance of our high density, large-scale tactile sensing plat-

form. We also perform an ablation study on the number of

input frames, where the best performance was obtained with

20 input frames (∼1.5 sec, Figure 7). We include additional

ablation studies on our pose estimation model, i.e. the 3D

indexing volume, repeating tensor, and link length loss, in

supplementary materials.

We evaluate how well the model generalizes to unseen

individuals and activities. As demonstrated in Figure 8, our

model generalizes to unseen people with a negligible in-

crease of the keypoint localization error. On the other hand,

our model has a varying performance on different types of

unseen tasks. The learned model easily generalizes to poses

with the pressure maps similar to what the model is trained

on but delivers poor performance with tactile imprints that

the model has never encountered before. For example, our

model generalizes to the lunging pose, where the pressure

maps are mainly directed by the human’s center of mass;

however, it fails to predict the push-up pose, which induces

pressure imprints that are vastly different from the training

distribution. When deploying the system for practical use

in real life, it is essential to perform a more systematic data

collection procedure covering more typical human activities

to achieve a more reliable pose estimation performance.

5.2. Action Classification

To obtain a deeper understanding of the learned features

in the pose estimation network, we perform action classifi-

cation by applying a linear classifier on the downsampled

tactile feature maps. We use the dataset on one single per-

son performing 10 different actions, where 80% is used

for training, 10% for validation, and 10% for testing. As

demonstrated in Figure 9, we obtain an accuracy of 97.8%,
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Figure 9. Results on action classification. Left: Confusion

matrix of action classification using a linear classifier on the

learned features from the pose estimation model. The linear

model achieves good accuracy, suggesting that the learned features

contain semantically meaningful information on the input tactile

frames. Right: Representative tactile frames from different ac-

tions.

which demonstrates the capability of our model to facilitate

downstream classification tasks.

5.3. Multi­person Pose Estimation

We further extend our model for multi-person pose es-

timation. As discussed in Section 4.2, the multi-person

pose estimation model is trained and validated with 112,000

and 10,000 pairs of synthesized tactile frames and keypoint

confidence maps. Performance is evaluated with 4,000

recorded tactile frames of two people performing stepping,

sitting, lunging, twisting, bending, squatting, and standing

on toes. The L2 distance of each keypoint and the localiza-

tion error of each body part are listed in Figure 10. Exam-

ples of the multi-person pose prediction are shown in Figure

11. Purely from the tactile information, our network suc-

Axis

X 14.5 14.1 10.1 15.3 24.7 10.2 12.6 14.1 14.9

Y 12.9 13.9 10.8 15.9 21.6 10.1 11.0 9.7 9.9

Z 12.7 16.6 13.2 17.3 23.9 10.0 8.0 6.5 6.4

Ave.  Head  Shoulder  Elbow  Wrist   Hip   Knee  Ankle  Feet

Figure 10. Results on multi-person scenarios (unit: cm). Top:

Euclidean distance between the predicted multi-person 3D skele-

ton and the ground truth. Bottom: Average keypoint localization

error of body parts along the X, Y, and Z axis in the real-world

coordinate.

cessfully localizes each individual and predicts his or her

3D pose with a localization error of less than 15 cm. The

predictions do not rely on any visual information and, there-

fore, are unaffected by visual obstructions or a limited field

of view, which are common challenges in vision-based hu-

man pose estimation.

5.4. Failure Cases

As demonstrated in Figure 12, the typical failure cases

can be categorized into three main types. First, the model
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Figure 12. Failure cases. Our model fails due to the lack of dis-

cernible physical contact with the floor (a-b) or the ambiguity of

the tactile signal (c-e).

fails to predict the position of the waist and the head (Fig-

ure 12 a). This is expected as we observe that the pres-

sure distributions of the tactile maps are rarely or not af-

fected by the movement of the head and wrist when a per-

son is standing on feet. Also, the model fails to predict the

poses where actions are performed without notable physical

contact with the floor, e.g., free-floating legs during sit-ups

and twisted torso during the standing-up process (Figure 12

b and e). Furthermore, different actions may induce very

similar pressure imprints, e.g., bending and twisting, caus-

ing trouble for the model to distinguish the activities due

to the intrinsic ambiguity of the tactile signal (Figure 12 c

and d). As for the multi-person pose estimation, additional

errors can happen because of the ambiguity underlying the

tactile signals from different individuals, where the model

fails when two people are too close to each other. This type

of data is not included in our synthetic training dataset.

6. Limitations and Future Work

We observe that even with the constraint on the human

body link lengths, some predicted human poses appear un-

realistic in real life. Therefore, adversarial prior can be im-

posed to further constrain the predicted 3D human pose.

Also, we currently use the same model for the single-person

and multi-person pose estimation, which suffers from the

ambiguity of the tactile signal induced by multiple people

that are too close to each other. To obtain more accurate pre-

dictions on multi-person pose estimation, a region proposal

network can be applied to localize the tactile information

belonging to each of the individuals, which will then respec-

tively pass through the pose estimation network to predict

the pose of each person [14, 47, 18]. Estimation and mod-

eling of multi-person interactions from tactile information

would be another interesting future direction.

7. Conclusion

We built a low-cost, high-density, large-scale tactile

sensing carpet and captured a large tactile and visual dataset

on humans performing daily activities. Leveraging the per-

ception results from a vision system as supervision, our

model learns to infer single-person and multi-person 3D

human skeletons with only the tactile readings of humans

performing a diverse set of activities on the intelligent car-

pet. This work introduces a sensing modality that is dif-

ferent and complementary to the vision system, opening up

new opportunities for human pose estimation unaffected by

visual obstructions in a seamless and confidential manner,

with potential applications in smart homes, healthcare, and

gaming.
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