
Graph Grammar-Based Automatic Design for Heterogeneous Fleets of
Underwater Robots

Allan Zhao1, Jie Xu1, Juan Salazar1, Wei Wang1, Pingchuan Ma1, Daniela Rus1, and Wojciech Matusik1

Abstract— Autonomous underwater vehicles (AUVs) are spe-
cialized robots that are commonly used for seafloor surveying
and ocean water sampling. Computational design approaches
have emerged to reduce the effort required to design both
individual AUVs as well as fleets. As the number and scale
of underwater missions increases beyond the capabilities of a
single vehicle, fleet level design will become more important.
Depending on the mission, the optimal fleet may consist of
multiple distinct types of AUVs designed to a variety of
specifications. Moreover, the AUVs may differ in both con-
tinuous parameters (such as battery capacity) and discrete
parameters (such as number and model of thrusters). In this
work, we present a computational pipeline for designing these
heterogeneous AUV fleets. Using a novel shape design space
based on a graph grammar and deformation cages, we can
express a variety of AUV architectures with different topologies,
component selections, and dimensions. We search this space
using a combination of discrete graph search and gradient-
based continuous optimization, enabled by a differentiable AUV
simulator. Finally, we formulate heterogeneous fleet design as
a modified knapsack problem, and solve it using an efficient
backtracking-based algorithm. We evaluate our pipeline on
a simulated mission with nonuniform design requirements—
surveying a section of seafloor with varying depth—and show
that the best heterogeneous fleet outperforms the best fleet
composed of a single vehicle type.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have many in-
dustrial applications, such as search and rescue, spatiotem-
poral sampling, sea floor mapping, and offshore oil and
gas installations [1], [2]. These applications have driven the
design and development of AUVs in a variety of sizes,
shapes, thruster configurations, and working depth limits.
Optimizing for different mission objectives (such as cost,
speed, and endurance) and operational conditions (such as
deep sea, seafloor, and extreme weather) translates into
significant variation in AUV designs [3]. The resulting design
space for AUVs becomes overly expansive and complex for
a person to explore without significant expertise. It includes
discrete parameters (such as topology and component selec-
tion) as well as continuous parameters (such as component
locations and dimensions). Engineers designing AUVs for
any combination of the conditions mentioned above use
methods that tend to rely on their collective knowledge and
experience [4]. These manual design approaches offer limited
trade-off possibilities.

Prior works on automating the design of AUVs [4]–[9]
have limited expressiveness over structures. A key challenge

1Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology (email to Allan Zhao: azhao@csail.mit.edu).

is to find representations that can encode discrete and contin-
uous parameters while supporting effective search strategies.
Inspired by previous work on graph grammars [10]–[14] and
shape deformation [15]–[17], we present a novel AUV shape
representation combining a graph grammar and cage-based
deformation. The grammar encodes AUV components and
topologies while cage-based deformation allows for continu-
ous shape variation—e.g., changing the length, diameter, or
thickness of a hull segment.

We then build upon our single AUV design approach
to rapidly design fleets containing multiple vehicle types
for tasks subject to heterogeneous constraints—for example,
large scale surveying at different depths. Much of the current
multi-AUV literature assumes the AUV fleet is homoge-
neous, or composed of a single vehicle type [18], [19].
Heterogeneous AUV fleets could potentially make full use
of individual abilities to satisfy the task requirements with
greater efficiency. Prior works on marine exploration using
heterogeneous AUV fleets [20]–[22] do not formulate the
task as an optimization problem with constraints nor optimize
the individual AUV designs along with the multi-AUV task.

In contrast, we begin by optimizing a number of individual
AUV designs, each with a different mass limit and depth
rating. Each design, consisting of discrete and continuous
parameters, is evaluated on a task-specific objective function
using a differentiable simulator. Our optimization pipeline
uses a combination of discrete graph search and gradient-
based continuous optimization to update each AUV’s design
parameters to minimize the objective. The result from these
previous steps is a diverse library of AUV designs that
feature unique pairings of mass and depth rating. Finally,
this library is fed into our combinatorial fleet optimization
algorithm, which outputs the optimal fleet according to the
task specifications.

In the development of our computational fleet design
pipeline, we present the following contributions. Our first
contribution is a novel graph-grammar for AUVs that cap-
tures a diverse space of topologies. Our second contribution
is that we formulate heterogeneous fleet design as a modified
knapsack problem and propose an efficient, exact algorithm
to solve it. We demonstrate our fleet design pipeline on
a simulated mission with nonuniform design requirements:
surveying a section of seafloor with varying depth.

II. DESIGN SPACE

We describe possible AUV topologies using a custom
graph grammar and parameterize the hull shape with de-
formable cages. A single AUV design is represented as a

Fig. 1. The rules comprising our AUV grammar. Symbols are either in
uppercase (representing abstract subgraphs) or in lowercase (representing
concrete components).

graph where the nodes are components and the edges are
the inter-component connections.

Our AUV grammar is illustrated in Fig. 1. Some rules
encode components such as underwater thrusters, hull seg-
ments, and a parametric battery. Each component has prop-
erties based on its real-life counterpart, such as maximum
thrust, mass, and energy density. The remaining rules control
how nodes in the design graph can expand into subgraphs.
Fig. 2 illustrates how a design is constructed by applying a
sequence of these grammar rules.

The hull shape is composed of multiple segments, each
of which is parameterized using a deformation cage. A cage
initially forms an axis-aligned bounding box surrounding its
segment, and the positions of its corners are functions of
the continuous parameters. As the corners of a cage move,
the points on the hull inside the cage are recalculated using
trilinear interpolation. By combining these deformation cages
with our graph grammar, we can represent AUVs with many
different topologies and shapes.

III. SIMULATION

A. Dynamic Model

We first establish the inertial and body frames to describe
the motion of an AUV. We adopt the North-East-Down
(NED) frame as the inertial frame. The body frame is defined
at the center of mass of an AUV with the three axes pointing
forward (x), right (y), and down (z). We define an AUV’s
state as a 12-dimensional vector s:

s =(x,Φ,vB,Ω) (1)

where x stands for the position of the AUV in the inertial
frame, Φ stands for the attitude in the form of Euler angles,
vB denotes the linear velocity in the body-fixed frame, and

Fig. 2. Sequential growth of a propeller-driven AUV from applying 7 of
our grammar rules.

Ω is the angular velocity in the inertial frame. The following
relation between the defined linear velocities holds:

vB = TB
I ẋ (2)

where TB
I is the rotation matrix expressing the transformation

from the inertial frame to the body-fixed frame. Moreover,
the following relation between the defined angular velocities
holds:

Ω= J(Φ)Φ̇ (3)

where J(Φ) is a Jacobian matrix. It is useful to collect the
kinematic equations in six-dimensional matrix forms. We
define the vector ν ∈ R6 as

ν =

(
vB
Ω

)
. (4)

According to Newton’s law and Euler’s equations, the overall
equations of motion can therefore be written in matrix form
as

Mvν̇+Cv(ν)ν+Dv +gv(TI
B) = τv +τE, (5)

where Mv ∈R6×6 represents the symmetric positive-definite
added mass and inertia matrix; Cv(v) ∈ R6×6 is the skew-
symmetric vessel matrix of the Coriolis and centripetal
terms; τE ∈R6×1 represents environmental disturbances from
wind, currents, and waves (which we assume to be zero
for simplicity); Dv ∈ R6 is the hydrodynamic damping;
gv(TI

B) represents the forces and moments due to gravity
and buoyancy in the body-fixed frame. τv = [fT τ T]T ∈ R6

is the sum of forces and moments exerted by all thrusters.
More details of the dynamic model can be found in [1].

For each thruster, we compute its orientation and relative
position with respect to the center of mass, which gives us
the direction of its thrust and induced torque. The magnitude
of the thrust is an optimization variable.

For our hydrodynamic model, we follow the practice
from [23], [24] by discretizing the hull geometry into a

triangle mesh and computing the lift and drag force on each
surface triangle as follows:

fdrag =
1
2

ρACd(φ)‖vrel‖2d (6)

flift =−
1
2

ρACl(φ)‖vrel‖2n (7)

where ρ is the fluid density, A is the triangle’s area, vrel =
vfluid − (v+Ω×xrel) is the fluid velocity relative to the
triangle, d= vrel

‖vrel‖2
, and n is the triangle’s normal. We ignore

the indices of the surface triangles for clarity. Cd(φ) and
Cl(φ) are the coefficients of drag and lift respectively, where
φ = cos−1(n · vrel)− π

2 is the angle of attack. We define
Cd(φ) and Cl(φ) to resemble typical drag and lift curves,
which are symmetric and monotonically increasing functions
respectively:

Cd(φ) = 0.05 · (1−|φ |)3 +0.05 ·3 · |φ |(1−|φ |)2

+1.85 ·3 · |φ |2(1−|φ |)+2.05 · |φ |3 (8)

Cl(φ) = −0.8 · (1−φ)3−0.5 ·3 ·φ(1−φ)2

+0.1 ·3 ·φ 2(1−φ)+2.5 ·φ 3, (9)

The total hydrodynamic damping Dv = [fT
H τ

T
H]T is computed

by adding together the forces on each triangle and their
resulting torques:

fH = ∑(fdrag +flift), (10)

τH = ∑(xrel× (fdrag +flift)), (11)

where xrel = xtri−CG is the position of a triangle relative
to the vehicle’s center of mass.

Eqn. (5) provides us enough information to compute the
time derivatives of s. We can now represent the dynamics in
a compact form M:

ṡ = M(s,a,G,θ). (12)

Here, a is the action vector consisting of forces exerted
by each thruster. The design graph and shape parameters
(G,θ) determine the configuration of thrusters and the hull
geometry. In short, given the current design (G,θ), the
current state s, and the current action a, the dynamic model
M computes ṡ that evolves the dynamic system.

B. Trim State and Control

To control an AUV design, we compute a trim state and
execute a simple open-loop control strategy. A trim state is
a state with zero linear and angular accelerations:

(˙̄x, ˙̄Φ,0,0) =M(s̄, ā,G,θ), (13)

By constantly applying the control action ā to the vehicle
in the trim state, the vehicle maintains its linear and angular
velocity. This results in a straight line motion that allows us
to extrapolate the vehicle’s power consumption over a long
time horizon and calculate the resulting endurance.

TABLE I
SIMULATION PARAMETERS FOR THE SURVEYING MISSION

Parameter Value Description
ρ 1027 kg/m3 Density of seawater

asurvey 4000 km2 Total survey area
mtotal 4000 kg Total fleet mass
dtransit 100 km Transit distance
tcharge 24 hr Charging time

η 0.5 Propulsion efficiency
pcore 8 W Compute and sensor power
psonar 70 W Sonar power consumption when active
hsonar 400 m Sonar scan width

α 0.5 Sonar swath overlap fraction
γ 0.8 Usable fraction of battery capacity

IV. OPTIMIZATION

Our pipeline employs multiple optimization techniques to
generate an optimal fleet for a given task. In the precompu-
tation stage, we optimize a library of vehicles for multiple
mass limits and depth ratings using a combination of discrete
search and gradient-based continuous optimization. In the
scheduling stage, we then solve a modified knapsack problem
using the library of precomputed designs to minimize the
mission time under a total mass constraint.

A. Task Specification

We demonstrate our complete pipeline on a simulated
surveying mission, where the vehicles in a fleet work together
to scan a region of seafloor with area asurvey using sonar. The
area being surveyed ranges in depth from 200 to 1000 meters,
so at least one of the vehicles must be capable of the full
depth. We assume that the survey area is sloped so that there
is an equal, infinitesimal fraction of its area at each possible
depth.

The goal is to complete the survey using as little time as
possible, subject to a total fleet mass constraint mtotal (which
relates to the cost to construct and transport the vehicles).
Vehicles start at a shore-based facility, and navigate their
way to the survey area located a distance dtransit away. The
survey does not need to be completed on a single battery
charge; vehicles may return to the facility to recharge before
resuming the survey. Recharging a vehicle takes a predefined
amount of time tcharge. The vehicles must return to the shore
facility by the end of the mission.

We assume each vehicle travels at one of two possible
speeds: vtransit when transiting to or from the survey area,
and vsurvey when actively surveying. These speeds may vary
between different vehicles in a fleet.

The specific values of the parameters used in our experi-
ments are listed in Table I.

B. Precomputation of Individual Vehicles

Before running the fleet optimization, we first generate a
library of vehicles for multiple combinations of mass limits
and depth ratings. The mass limits are chosen so that they
roughly form a geometric sequence, while the depth ratings
are chosen so that an equal amount of the survey area lies
within each depth bin. In our experiments, we select four

depth cutoffs d1 = 400, d2 = 600, d3 = 800, d4 = 1000 m
resulting in equal areas in each depth bin Âk = 1000 km2.
Within each depth bin, we optimize vehicles for mass limits
of 200, 300, 500, 1000, 1500, and 2000 kilograms.

For each mass and depth pair, we run our single vehicle
design pipeline consisting of a discrete search algorithm
paired with gradient-based continuous optimization. The dis-
crete search operates as an outer loop that samples different
topologies, and is only concerned with the types of compo-
nents and how they are connected. Continuous optimization
is then responsible for finding locally optimal continuous
parameters for each topology. The continuous parameters of
a design include not only the positions, orientations, and
dimensions of each component θ , but also the steady state
speeds in the transit and survey phases vtransit,vsurvey and the
control inputs a to the thrusters.

The objective function for continuous optimization is
composed of two terms:

• a survey rate term Lrate that maximizes the area surveyed
by the vehicle per unit time (including transit and
charging time between sorties),

• and a penalty term Lpenalty that helps the optimization
converge towards a positive survey time.

Our formulation also includes several constraints:
• linear and angular acceleration are zero in both the

transit and survey phases, meaning that the thrust force
exactly counteracts the forces from drag and buoyancy,

• the survey time tsurvey is positive, ensuring that the
vehicle has sufficient battery capacity to approach and
return from the survey area,

• and the total mass m of the vehicle is no greater than
the mass limit mmax.

The single-vehicle optimization problem can be formally
described as

min
θ ,vtransit,vsurvey,a

−asortie

tsortie︸ ︷︷ ︸
Lrate

+λ e−tsurvey︸ ︷︷ ︸
Lpenalty

s.t. v̇transit, ω̇transit = 0
v̇survey, ω̇survey = 0
tsurvey ≥ 0
m≤ mmax

(14)

where λ = 1× 103 and tsortie = ttransit + tsurvey + tcharge is
the total time per sortie. The objective and constraints, which
involve computing the dynamics of the underwater vehicle,
are all differentiable and can be optimized by a gradient-
based solver.

C. Fleet Optimization

We now describe our algorithm to find the best fleet
(Alg. 1) from the 24 precomputed vehicle candidates in
Section IV-B, such that the total mass of the fleet is within a
limit and the entire region is surveyed in minimal time. Let
{Ci}= {(mi,di,vi

survey, t i
survey, t i

transit)} be the set of vehicles in
the fleet, and let Ni be the number of survey sorties scheduled

for the i-th vehicle. The fleet optimization problem can be
formally described as:

min
{(Ci,Ni,T̃i)}

max
i

T̃i (15)

s.t. Ci ∈ candidate designs (16)

∑
i

mi ≤ mmax (17)

T̃i ≥ t i
transit×Ni + tcharge× (Ni−1) (18)

T̃i ≤ (t i
transit + t i

survey)×Ni + tcharge× (Ni−1) (19)

Entire survey area is covered
Ni ∈ N,

where T̃i is the total working time for the i-th vehicle, and
(18-19) are the validity constraints for this surveying time.
Specifically, a vehicle has to spend time t i

transit for each sortie,
time tcharge between two consecutive sorties to recharge, and
no more than time t i

survey to scan the area during each sortie.
We perform binary search on the optimal time T ∗ to

complete the survey task, converting the min-max optimiza-
tion problem in (15-19) into a feasibility problem with an
additional constraint T̃i≤T ∗. In this way, we find the smallest
time limit T ∗ in which a fleet can complete the mission.

Note that a vehicle with depth rating di can survey areas
with depth less than or equal to di. Given a maximal allowed
time T ∗, let ai be the maximal area that can be surveyed by
a vehicle i within its depth range. Consequentially, a fleet
that can finish the task on time must satisfy:

∀d ∑
dk≥d

Âk ≤ ∑
di≥d

ai, (20)

where Âk is the total area required to be surveyed at depth
dk.

To compute the maximal survey area ai for each vehicle,
we can formulate the following mixed integer linear pro-
gramming problem:

max
Ni,T̃ i

ai (21)

s.t.

ai =
(

T̃i− t i
transit×Ni− tcharge× (Ni−1)

)
vi

survey

T̃i ≥ t i
transit×Ni + tcharge× (Ni−1)

T̃i ≤ (t i
transit + t i

survey)×Ni + tcharge× (Ni−1)

T̃i ≤ T ∗, Ni ∈ N

Note that the analytical solution of (21) can be com-
puted using standard algebraic techniques. Specifically, the
maximum is achieved when Ni = b

T ∗+tcharge
t i
transit+t i

survey+tcharge
c or

d T ∗+tcharge
t i
transit+t i

survey+tcharge
e, and T̃i = min{T ∗,(t i

transit+ t i
survey)×Ni+

tcharge× (Ni−1)}.
The feasibility problem can now be regarded as a modified

knapsack problem, where each type of candidate vehicle can
contribute ai survey area in its depth range with a weight cost
of mi, and we need to select the correct number of vehicles of
each type so that their total surveyed area satisfies (20). We

Fig. 3. The best designs found by our single-vehicle optimization pipeline
for each combination of mass limit and depth rating. The survey rate (in
m2/s) is indicated next to each design.

convert this modified knapsack problem into a graph search
problem and solve it by breadth first search with several
pruning techniques.

Specifically, we denote a search node (i,A,M) as achiev-
able if and only if there exists a fleet composed of the
first i types of vehicles that can survey an area A within
mass budget M. Given an achievable node (i,A,M), we can
consider how many vehicles of type i+ 1 to select. If we
select k vehicles of type i+1, we can further label the node
(i+1,A+ai+1k,M+mi+1k) as achievable. Note that the area
constraint (20) would be hard to check if we consider the
vehicles in arbitrary order, since the whole fleet selection
would need to be encoded in our node state instead of just
three values (i,A,M). By sorting the candidate vehicles in
descending order of their depths, we can easily prune nodes
that violate (20) while keeping the node state compact.

Our search algorithm starts with only node (0,0,0) being
achievable. The feasible solution of the problem exists if
and only if there exists an achievable node (n,A,M) where
A≥∑k Âk and M≤mmax. Since the problem is combinatorial,
the search space is extremely large. In addition to the area
constraint pruning mentioned earlier, we also apply Pareto
pruning to further speed up the algorithm. Given a set of
all achievable nodes after considering the first i types of
vehicles, a node {(i,A j,M j)} can be removed from the set if
it is dominated by another achievable node {(i,Ak,Mk)}; i.e.,
A j ≤ Ak and M j ≥ Mk and the inequality holds for at least
one equation. In other words, we only keep the achievable
nodes on the Pareto front of the two metrics A and M after
considering each additional vehicle type.

Note that our fleet optimization algorithm provides an
exact solution to the problem described in (15-19). Only
nodes which cannot be a part of the solution are pruned.

V. RESULTS

In this section, we provide an end-to-end demonstration
of our heterogeneous fleet optimization pipeline, and show
that it produces fleets that complete the simulated surveying
mission more quickly than fleets composed of a single
vehicle type.

Algorithm 1: Fleet Optimization
Data: n candidate vehicles, weight limit mmax, area

to be surveyed at each depth Âk.
Result: The optimal fleet and the minimum time to

complete survey task T .
sort candidate vehicles in descending order of depth.
Tl ← 0,Tr← a large enough number.
while Tl < Tr− ε do /* binary search */

T ∗← (Tl +Tr)/2
compute ai for each vehicle type by solving (21).
// breadth first search

success← False
S = {(0,0,0)} /* achievable set */

for i = 1→ n do
S′ = {}
for (i−1,A,M) ∈ S do

for k = 0→ b(mmax−M)/mic do
S′ = S′∪{(i,A+aik,M+mik)}

end for
end for
remove nodes from S′ by checking area

constraint in Eqn. (20).
remove nodes from S′ by Pareto pruning.
if ∃(i,A,M) ∈ S′,A≥ ∑k Âk then

success← True
save the fleet configuration.
break

end if
end for
// halve the searching space

if success then
Tr← T ∗

else
Tl ← T ∗

end if
T ← Tl
f leet← last saved fleet configuration.

end while

A. Single-Vehicle Optimization

Figure 3 shows the results of the precomputation stage,
where we generate a library of designs for multiple mass
and depth rating combinations. One of the most noticeable
trends is the increasing size and number of battery modules
(represented by the yellow cylinders) as the allowed mass
increases. The corresponding increase in battery capacity
allows higher mass vehicles to spend more time surveying
as opposed to recharging, resulting in greater survey rate.

As the required depth rating increases, the thickness and
mass of the hull also increases. In order to maintain close
to neutral buoyancy, less of the internal volume can be used
for batteries. The survey rate reduces accordingly. This trend
is noticeable at the higher end of the depth range, as more
space is left between the batteries and the hull.

Thruster placement (shown in red) does not appear to
follow a clear pattern. One feature stands out however:

Fig. 4. The best fleet found by our fleet optimization algorithm using the
precomputed design library, along with the number of sorties performed by
each vehicle of a given type. The fleet consists of 4 different designs, with
the number of instances of each design indicated.

the upward orientation of some thrusters. Interestingly, the
optimization tends to produce negatively buoyant designs
that require thrust to maintain a constant depth. Although
this may seem counterintuitive (since it results in additional
power consumption), the endurance of the vehicles is in-
creased. Reducing the displacement (and therefore mass)
of the hull allows allocating more of the mass budget
to batteries, resulting in greater endurance compared to a
neutrally buoyant design. If recoverability of the vehicles in
case of failure is important, an additional constraint enforcing
neutral buoyancy (omitted here) could be imposed.

B. Fleet Optimization

Using the precomputed library of vehicles, we run our
fleet optimization algorithm (Alg. 1) to produce an optimal
fleet for the mission (Fig. 4). We notice that the fleet
includes a large number of lightweight vehicles as opposed
to fewer, more capable vehicles. This makes sense, as overall
survey rate of the fleet scales roughly linearly with the
number of vehicles. The vehicle type chosen to cover the
deepest portion of the survey area is not the lightest possible,
however. This may be due to the fact that the hull of the
lightest vehicle capable of 1000 m depth weighs 145 kg
alone, leaving very little of the mass budget for batteries.

Taking advantage of varying design requirements within
the same mission (in our case, the depth rating) enables
a better solution composed of multiple vehicle types. The
heterogeneous fleet designed by our pipeline completes the
mission in only 39 days, as opposed to the best achievable
using a single vehicle type under the same constraints: 44
days using 10 identical vehicles of 400 kg each. The results
in Table II suggest that parallelizing across multiple identical
vehicles can decrease mission time, but only until a certain
point. As the number of vehicles increases (and the mass
budget per vehicle decreases), the hull represents a nontrivial
fraction of the vehicle mass.

C. Implementation Details

The majority of our pipeline is implemented in Python
using the PyTorch library [25] for autodifferentiation.
Performance-critical components of the continuous optimiza-
tion objective, namely the underwater vehicle dynamics, are
implemented in C++ with manually derived gradients.

We choose to use random search as the discrete search
algorithm for simplicity, and SLSQP from the NLopt pack-
age [26] for gradient-based continuous optimization. Each

TABLE II
MISSION TIMES USING A SINGLE VEHICLE TYPE

Number of vehicles Mass per vehicle (kg) Mission time (days)
1 4000 187.5
2 2000 97.6
3 1333 72.3
4 1000 59.8
5 800 49.5
6 666 49.0
7 571 46.9
8 500 45.3
10 400 44.0
12 333 49.2
14 285 49.1
16 250 54.4
18 222 57.5
20 200 62.5
22 181 68.3
24 166 76.1

iteration of the discrete search, which involves up to 1000
SLSQP iterations, takes an average of 8 seconds per topology
on a Google Cloud N2 instance with 24 cores. The con-
tinuous optimization is single-threaded, but multiple design
searches for different mass and depth combinations can be
run in parallel. The entire precomputation stage can be
completed in less than 5 hours on the 24-core machine.

With the 24 precomputed designs (Fig. 3) as input, our
fleet optimization algorithm then produces the same fleet as
brute force enumeration in less than a second.

VI. CONCLUSION AND FUTURE WORK

Designing optimal heterogeneous fleets of autonomous
underwater vehicles (AUVs) for a given task requires both
vehicle-level and fleet-level optimization. Individual vehicles
are described by both discrete parameters, such as topology
and component selection, as well as continuous parameters
such as the placement and sizing of the components.

In this work, we propose a novel shape design space
for AUVs that encompasses both discrete parameters (rep-
resented in a graph) and continuous parameters associated
with the nodes of the graph. We further contribute a complete
pipeline for heterogeneous AUV fleet design, and evaluate it
on a simulated surveying task covering a range of depths.
The resulting solution, consisting of multiple distinct AUV
designs, can complete the surveying task in less time than
the best fleet composed of a single design.

One possible direction for future work would be a more
principled method for selecting the mass and depth bins. We
also rely on a simple analytical drag model to estimate the
power needed for propulsion. Modeling drag using compu-
tational fluid dynamics (CFD) would enable more detailed
shape design. Finally, designs in our framework are specified
at a high level of abstraction. This allows for mission-level
planning, but still leaves many details of fabrication to the
human designer.

ACKNOWLEDGMENTS

This work is supported by Defense Advanced Research
Projects Agency (DARPA) grant No. FA8750-20-C-0075.

REFERENCES

[1] G. Antonelli, T. I. Fossen, and D. R. Yoerger, Modeling and Control
of Underwater Robots. Cham: Springer International Publishing,
2016, pp. 1285–1306. [Online]. Available: https://doi.org/10.1007/
978-3-319-32552-1 51

[2] K. L. Vasudev, “Review of autonomous underwater vehicles,” in
Autonomous Vehicles, G. Dekoulis, Ed. Rijeka: IntechOpen, 2020,
ch. 2. [Online]. Available: https://doi.org/10.5772/intechopen.81217

[3] K. Alam, T. Ray, and S. G. Anavatti, “A brief taxonomy of au-
tonomous underwater vehicle design literature,” Ocean Engineering,
vol. 88, no. Complete, pp. 627–630, 2014.

[4] M. Martz and W. L. Neu, “Multi-objective optimization of an au-
tonomous underwater vehicle,” in OCEANS 2008, 2008, pp. 1–9.

[5] C. Brown and R. P. Clark, “Using a novel vehicle conceptual design
utility to evaluate a long-range, large payload uuv,” in OCEANS 2010
MTS/IEEE SEATTLE, 2010, pp. 1–10.

[6] K. Alam, T. Ray, and S. G. Anavatti, “Design optimization of an un-
manned underwater vehicle using low- and high-fidelity models,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 11, pp. 2794–2808, 2017.

[7] ——, “An evolutionary approach for the design of autonomous un-
derwater vehicles,” in AI 2012: Advances in Artificial Intelligence,
M. Thielscher and D. Zhang, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 279–290.

[8] ——, “Design of a toy submarine using underwater vehicle design
optimization framework,” in 2011 IEEE Symposium on Computational
Intelligence in Vehicles and Transportation Systems (CIVTS) Proceed-
ings, 2011, pp. 23–29.

[9] A. Alvarez, V. Bertram, and L. Gualdesi, “Hull hydrodynamic
optimization of autonomous underwater vehicles operating at
snorkeling depth,” Ocean Engineering, vol. 36, no. 1, pp. 105–112,
2009, autonomous Underwater Vehicles. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0029801808001765

[10] K. Sims, “Evolving virtual creatures,” in Proceedings of the 21st
annual conference on Computer graphics and interactive techniques,
1994, pp. 15–22.

[11] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg,
D. Rus, and W. Matusik, “Robogrammar: graph grammar for terrain-
optimized robot design,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1–16, 2020.

[12] J. Xu, A. Speilberg, A. Zhao, D. Rus, and W. Matusik, “Multi-
objective graph heuristic search for terrestrial robot design.” IEEE,
2021.

[13] F. R. Stöckli and K. Shea, “A simulation-driven graph grammar
method for the automated synthesis of passive dynamic brachiating
robots,” in ASME 2015 International Design Engineering Technical
Conferences and Computers and Information in Engineering Confer-
ence. American Society of Mechanical Engineers Digital Collection,
2015.

[14] D. Pathak, C. Lu, T. Darrell, P. Isola, and A. A. Efros, “Learning to
control self-assembling morphologies: a study of generalization via
modularity,” arXiv preprint arXiv:1902.05546, 2019.

[15] J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik, S. Sueda, and
P. Agrawal, “An End-to-End Differentiable Framework for Contact-
Aware Robot Design,” in Proceedings of Robotics: Science and
Systems, Virtual, July 2021.

[16] A. Jacobson, I. Baran, J. Popović, and O. Sorkine, “Bounded
biharmonic weights for real-time deformation,” ACM Trans. Graph.,
vol. 30, no. 4, Jul. 2011. [Online]. Available: https://doi.org/10.1145/
2010324.1964973

[17] T. Ju, S. Schaefer, and J. Warren, “Mean value coordinates for closed
triangular meshes,” ACM Trans. Graph., vol. 24, no. 3, p. 561–566, Jul.
2005. [Online]. Available: https://doi.org/10.1145/1073204.1073229

[18] Z. Zhou, J. Liu, and J. Yu, “A survey of underwater multi-robot
systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, p. 18, 2021.

[19] J. Yu, C. Wang, and G. Xie, “Coordination of multiple robotic fish
with applications to underwater robot competition,” IEEE Transactions
on Industrial Electronics, vol. 63, no. 2, pp. 1280–1288, 2016.

[20] R. Thenius, D. Moser, J. C. Varughese, S. Kernbach, I. Kuksin,
O. Kernbach, E. Kuksina, N. Mišković, S. Bogdan, T. Petrović,
A. Babić, F. Boyer, V. Lebastard, S. Bazeille, G. W. Ferrari, E. Donati,
R. Pelliccia, D. Romano, G. J. Van Vuuren, C. Stefanini, M. Mor-
gantin, A. Campo, and T. Schmickl, “subcultron - cultural development
as a tool in underwater robotics,” in Artificial Life and Intelligent

Agents, P. R. Lewis, C. J. Headleand, S. Battle, and P. D. Ritsos, Eds.
Cham: Springer International Publishing, 2018, pp. 27–41.

[21] T. Schmickl, R. Thenius, C. Moslinger, J. Timmis, A. Tyrrell, M. Read,
J. Hilder, J. Halloy, A. Campo, C. Stefanini, L. Manfredi, S. Orofino,
S. Kernbach, T. Dipper, and D. Sutantyo, “Cocoro – the self-aware
underwater swarm,” in 2011 Fifth IEEE Conference on Self-Adaptive
and Self-Organizing Systems Workshops, 2011, pp. 120–126.

[22] D. Sutantyo, P. Levi, C. Möslinger, and M. Read, “Collective-adaptive
lévy flight for underwater multi-robot exploration,” in 2013 IEEE
International Conference on Mechatronics and Automation, 2013, pp.
456–462.

[23] S. Min, J. Won, S. Lee, J. Park, and J. Lee, “Softcon: Simulation
and control of soft-bodied animals with biomimetic actuators,” ACM
Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019.

[24] P. Ma, T. Du, J. Z. Zhang, K. Wu, A. Spielberg, R. K. Katzschmann,
and W. Matusik, “Diffaqua: A differentiable computational design
pipeline for soft underwater swimmers with shape interpolation,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, p. 132, 2021.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[26] S. G. Johnson, “The nlopt nonlinear-optimization package,” 2014.

